期刊文献+

拟圆的最大-最小不等式性质

Max-min inequality property for quasidisk
下载PDF
导出
摘要 利用区域的最大-最小不等式性质的拟共形不变性和圆的最大-最小不等式性质,得到了拟圆的最大-最小不等式性质. By using the invariance of the max-min inequality preperty of Jordan domain under quasiconformal mappings and the max-min inequality preperty of a disk,the papar proves that the quasidisk has the max-min inequality property too.
出处 《高校应用数学学报(A辑)》 CSCD 北大核心 2006年第4期484-488,共5页 Applied Mathematics A Journal of Chinese Universities(Ser.A)
基金 国家自然科学基金(10471039 10271043) 浙江省自然科学基金(M103087)
关键词 拟圆 拟共形映射 最大-最小不等式 quasidisk quasiconformal mapping max-min inequality
  • 相关文献

参考文献19

  • 1Lehto O. Univalent Functions and Teichmüller Space[M]. New York: Springer-Verlag,1986.
  • 2Beardon A F. The Geometry of Discrete Group[M]. New York.. Springer-Verlag, 1982.
  • 3Balogh Z. Hausdorff dimension distribution of quasiconformal mappings on the Heisenberg group[J]. J Anal Math,2001,83:289-312.
  • 4Sullivan D. Quasiconformal homeomorphism and dynamicsⅡ[J]. Acta Math, 1985, 155: 243-260.
  • 5Koranyi A, Riemann H M. Foundations for the theory of quasiconformal mappings on the Heisenberg group[J]. Adv in Math,1995,111:1-87.
  • 6Ahlfors L V. Quasiconformal reflection[J]. Acta Math, 1963,109:291-301.
  • 7Gehring F W. Uniform domain and the uniquitous quasidisk[J]. Jahresber Deutsch Math Verein,1987,89:88-103.
  • 8Osgood B G. Univalence criteria in multiply-connected domains[J]. Trans Amer Math Soc, 1980,260:499-519.
  • 9Krzyz J G. Quasicircles and harmonic measure[J]. Ann Acad Sci Fenn Math ,1987 ,12 :19-24.
  • 10褚玉明,程金发.拟圆和模单调域[J].数学学报(中文版),1996,39(4):556-560. 被引量:11

二级参考文献22

  • 1方爱农,褚玉明,程金发.拟共形映照和线性局部连通集[J].数学学报(中文版),1996,39(1):45-49. 被引量:4
  • 2褚玉明,程金发.拟圆和模单调域[J].数学学报(中文版),1996,39(4):556-560. 被引量:11
  • 3Gehring, F. W., Characteristic Properties of Quasidisks [M], Les press de l'Universitē de Montrēal, Montreal, 1982.
  • 4Martin, O. & Sarvas, J., Injectivity theorems in plane and space [J], Ann. Acad. Sci.Fenn., 4(1978-1979), 383-401.
  • 5Gehring, F. W., Univalent functions and Schwarizan derivative [J], Comment Math.Helv., 52(1977), 561-572.
  • 6Gehring, F. W. & Osgood, B. G., Uniform domains and the quasihyerbolic metric [J],J. Analyse Math., 36(1979), 50-74.
  • 7Vaesaelae, J., Uniform domain [J], Tohoku Math. J., 40(1988), 101-118.
  • 8Gehring, F. W., Characteristic of quasidisks [C], Banach Center Publications, 48, Warsaw, 1999.
  • 9Hag, K., What is a disk? [C], Banach Center Publications, 48, Warsaw, 1999.
  • 10Gehring, F. W. & Hag, K., Hyperbolic geometry and disks [J], J. Comp. Applied Math.,105(1999), 275-284.

共引文献11

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部