期刊文献+

小波包在火炮系统故障特征提取中的研究分析 被引量:1

Approach to Extraction of Fault Features Based on Wavelet Packet in Gun System
下载PDF
导出
摘要 故障的特征提取是故障诊断尤其是动态信号分析中经常面临的首要问题,文中通过对小波包正交变换理论的分析,给出了基于小波包的特征提取方法,并采用相对熵标准对其分类能力进行优化。通过对火炮系统的仿真试验,显示了这种方法的有效性,具有一定的工程应用价值。 In pattern recognition or classification, the extraction of fault features is very important in analyzing the dynamic signal. This article is mainly concerned with extracting effective features from the recognized or classified signals by selecting wavelet basis via given training sample sets, The results of a practical diagnosis indicate that the value features are extracted by using the approach, and the way has certain value in engineering applications.
出处 《弹箭与制导学报》 CSCD 北大核心 2006年第3期359-361,共3页 Journal of Projectiles,Rockets,Missiles and Guidance
关键词 小波包 故障 特征提取 火炮 wavelet packets fault feature extraction
  • 相关文献

参考文献7

  • 1叶昊,王桂增,方崇智.小波变换在故障检测中的应用[J].自动化学报,1997,23(6):736-741. 被引量:91
  • 2Wicherhause M V.Acoustic Signal Compression with Wavelet Paskets[A].In:Chui C K.Wavelets-A Tutorial Theory and Application.SanDiego[C].Calif.:Academic Press,1992:679-700.
  • 3肖华勇 孙进才.基于小波包去噪的目标特征提取[J].西北工业大学学报,2000,18:37-39.
  • 4R Coifman,M Wickauser.Entropy-Based Algorithms for Best Basis Selection[J].IEEE Trans on Information Theory,1992,38(2):909-996.
  • 5Saito N.Local Feature Extraction and its Applications Using a Library of Bases[D].PhD thesis.Yale University,1994-12.
  • 6N Saito,R R Coifman.Local discriminant bases[A].In:proc.SPIE 2303[C].1994:2-14.
  • 7K Fukunaga.Introduction to Statistical Pattern Recognition[M].Academic Press,Inc.1992.

二级参考文献2

  • 1秦前清,实用小波分析,1994年
  • 2杨福生,随机信号分析,1990年

共引文献90

同被引文献1

引证文献1

二级引证文献3

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部