期刊文献+

计算机模拟双层矩形位相光栅的实时变分束特征 被引量:1

Computer Simulation of real-time variational beam Feature of double-deck rectangle phase grating
下载PDF
导出
摘要 双层矩形光栅随入射角的不同可得到不同数目的光束。基于这一现象,通过改变双层光栅的入射角,并对其进行优化就可得到效率高且光强分布均匀的光束。对利用双层矩形相位光栅实时变分束特征制作新型分束器的方法进行了理论探讨,并对2束、3束、4束光分束分别进行了分析。通过计算机模拟,从理论上求出了优化参数,并对结果进行了讨论。理论分析表明,通过对入射角进行优化可以得到衍射效率高且光强分布均匀的分束器。该研究为制作方便实用、造价低廉的分束器提供了理论基础。 The light incidence angles can which goes thro produce which has high efficiency and different uniform ugh a double-deck rectangle phase grating with different numbers of beams. Based on the phenomenon, the beam distributed light intensity can be obtained by changing and optimizing the grating's incidence angle. The method of making a new type of splitter by the real-time variational beam feature of the double-deck rectangle phase grating was investigated theoretically. Two, three or four beams produced by the method were analyzed respectively. Through the simulation with a computer, the optimizing parameters of incidence angle were theoretically derived and the result was discussed. Theoretical analysis shows that the splitter with high diffraction efficiency and uniform distributed light intensity can be designed by incidence angle optimization. The study provides a theoretical basis for making practical and cheap splitting device.
出处 《应用光学》 CAS CSCD 2006年第2期89-91,共3页 Journal of Applied Optics
关键词 双层矩形相位光栅 实时 变分束 计算机模拟 double-deck rectangle phase grating real time variation beam computer simulation
  • 相关文献

参考文献4

  • 1WANG Kuo-ping. Holography with surface plasmon coupled waveguide modes[J]. Appl Optics, 1995,34(29) :6666-6671.
  • 2ANDRE G,SONG L, ROGER A L. Multiple beam generation using a stratified volume holog-raphic grating[J]. Appl Optics ,1995,27(6):5582-5587.
  • 3MASANORI L, HIROYUKI A,KAZOU E. Holographic Fourier diffraction gratings with a high diffraction[J]. Appl Optics, 1992,14 ( 5 ) : 4051-4057.
  • 4蔡春平.光纤折射率的依赖因素[J].应用光学,2000,21(5):13-18. 被引量:14

二级参考文献10

  • 1BrehmC,etal.Improveddrawingconolitionsforverylow-loss1.55μmdispersion-shiftedfiber[C],OFC′88,1988.
  • 2SakaiJI,etal.Bendinglossofpropagationmodesinarbitraryindexprofileopticalfibers[J].ApplOpt,1978,17(10):1499-1506.
  • 3干福熹等著.光学玻璃(上)[M].北京:科学出版社,1982.
  • 4蔡春平等.菱形偏振保持光纤的研制[J].光子学报,1995,24(21):63-68.
  • 5CohenLG,etal.Effectoftemperatureontransmissioninlightguides[J].TheBellSystemTechnicalJournal,1979,58(4):945-951.
  • 6HanawaF,etal.Influencesofthedrawingconditionsonopticalcharacteristicsinundoped-silica-coresingle-modefibers[J],OpticsLett,1987,12(8):617-618.
  • 7WilliamsDH,etal.Single-modeopticalfiberindexofrefractiondependenceonproductparameters,tensilestressandtemperature[M].IWCS,1990,726-729.
  • 8YamauchiR,etal.Directobservationofdrawing-inducedanisotropicrefractive-indexchangeinquasifibersbyapolarizationpreformanalyzer[C],OFC89,1989,15:161.
  • 9HibinoY,etal.EvaluationofresidualstressandviscosityinSiO2-core/F-SiO2cladsingle-modeopticalfibersfromBrillouingainspectra[J].JAppl.Phys,1989,66(9):4049-4052.
  • 10OhgaY,etal.Influenceofdrawingconditionontherefractiveindexprofileandresidualstressinpuresilicacoresingle-modefibers[J].OpticalfiberCommunicationConference,1989,5:160.

共引文献13

同被引文献13

  • 1范希智.利用杨氏双缝干涉讨论Talbot效应[J].光子学报,2005,34(4):621-623. 被引量:7
  • 2朱日宏,陈磊,王青,高志山,何勇.移相干涉测量术及其应用[J].应用光学,2006,27(2):85-88. 被引量:37
  • 3LOHMANN A W,THOMAS J A.Making an array illuminator based on the Talbot effect[J].Appl.Opt.,1990,29(9):4337-4340.
  • 4PATORSKI K.The self-imaging phenomenon and its applications[J].Prog.Opt.,1989(27):1-108.
  • 5AZANA J.Temporal self-imaging effects of periodic optical pulse sequences of finite duration[J].J.Opt.Soc.Am.B,2003(20):83-90.
  • 6JAHNS J,ELJOUDI E,HAGEDORN D,et al.Talbot interferometer as a time filter[J].Optik (Stuttgart),2001,112(2):295-298.
  • 7MONTGOMERY W D.Self-imaging objects of infinite aperture[J].J.Opt.Soc.Am.,1967,57(7):772-778.
  • 8JAHNS J,KNUPPERTZ H,LOHMANN A W.Montgomery self-imaging effect using computergenerated diffractive optical elements[J].Opt.Comm.,2003(225):13-17.
  • 9ARRIZON V,VELAZQUEZ G R,IBARRA J G.Fractional talbot effect:compact description[J].Optical Review,2000,7(2):129-131.
  • 10LOHMANN A W,KNUPPERTZ H,JAHNS J.Fractional montgomery effect:a self-imaging phenomenon[J].J.Opt.Soc.Am.A,2005,22(8):1500-1508.

引证文献1

二级引证文献1

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部