期刊文献+

基于椭圆曲线的XML数字签名研究与实现 被引量:1

Research and Implementation of XML Digital Signature Based on Elliptic Curve
下载PDF
导出
摘要 在分析基于椭圆曲线的XML数字签名流程及其安全性的基础上,改进影响椭圆曲线签名算法(ECDSA)实现效率的关键模块,提高其整体运算效率,实现了基于椭圆曲线的XML签名服务。在统一平台上对三种公钥密码服务实现XML数字签名的性能进行比较,实验结果表明,在XML签名中使用ECDSA,能够实现网络环境中高安全性、高效率的数字签名处理。 By the analysis of XML digital signature based on elliptic curve and its security, an XML digital signature service based on elliptic curve is proposed and implemented, through optimizing the key algorithm of elliptic curve digital signature algorithm (ECDSA), which has effected the whole implementation efficiency. Compared with the performances of XML digital signature schemes based on another two public key cryptographies on a uniform platform, the result of the experiment shows that the scheme based on ECDSA is more secure and more efficient to deal with signature in the network environment.
出处 《微电子学与计算机》 CSCD 北大核心 2006年第9期144-146,149,共4页 Microelectronics & Computer
基金 国信办"国家电子政务等级保护试点工作"(200402008)
关键词 椭圆曲线 XML 数字签名 Elliptic curve, XML digital signature
  • 相关文献

参考文献4

  • 1S Blake Wilson,G Karlinger,T Kobayashi.Using the elliptic curve signature algorithm for XML digital signatures.http://www.ietf.org/rfc/rfc4050.txt?number=4050,2005
  • 2Darrel Hankerson,Alfred Menezes,Scott Vanstone.Guide to selliptic curve cryptography[M].New York:SpringerVerlag New York Inc,2004
  • 3FIPS 186-2.Digital signature standard(DSS).Federal information processing standards publication 186-2,National Institute of Standards and Technology,2000
  • 4Java Cryptography Architecture API Specification & Reference.http://java.sun.com/j2se/1.5.0/docs/guide/s,2004

同被引文献11

  • 1Hankerson D, Menezes A, Vanstone S. Guide to elliptic curve cryptography [ M ]. New York: Springer - Verlag, 2003.
  • 2Solinas J. Efficient arithmetic on koblitz curves[C]//Deisigns, Codes and Cryptography. Netherlands, Springer, 2000; 19(3) : 195 - 249.
  • 3Okeya K, Samoa K S, Spahn C, et al. Signed binary representations revisited [ C]//CRYPTO 2004. Heidelberg, Springer, 2004(3152) : 123 - 139.
  • 4Avanzi R, Dimitrov V, Doche C, et al. Extending scalar multiplication using double bases[ C] // Advances in Cryptology ASIACRYPT'06. Heidelberg, Springer, 2006 (4284) : 130 - 144.
  • 5Bemstein D J, Lange T. Inverted edwards coordinates [ C ]// AAECC 2007. Heidelberg, Springer, 2007 (4851) :20 - 27.
  • 6Yu Wei, Wang Kunpeng, Li Bao. Fast algorithm converting integer to double base chain[C]//ChinaCrypt' 2008. China: Chendu, 2008 : 355 - 366.
  • 7Doche C, Habsieger L. A tree- based approach for computing double - base chains [ C ]//ACISP 2008. Heidel- berg, Springer, 2008(5107):433-446.
  • 8Dimitrov V S, Cooklev T. Hybrid algorithm for the computation of the matrix polynomial I + A+ … + AN-1[J]. IEEE Trans. on Circuits and Systems, 1995,42 (7) : 377 - 380.
  • 9Dimitrov V S, Imbert L, Mishra P K. Efficient and secure elliptic curve point multiplication using double - base chains[ C]//ASIACRYPT 2005. Heidelberg, Springer, 2005(3788) :59 - 78.
  • 10Dimitrov V S, Jullien G A, Miller W C. An algorithm for modular exponentiation [ J ]. Information Processing Letters, 1998,66(3) :155- 159.

引证文献1

二级引证文献4

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部