摘要
对于一个积分方程,研究其解的存在唯一性是十分重要的。用Picard逼近法和Banach不动点定理证明给定的积分方程φ,当|λ|足够小时,该方程在[a,b]上存在唯一的连续解。Picard逼近法的要点是建立一个逼近序列,然后考察这个序列取值范围、一致收敛性和极限的存在唯一性。应用Banach不动点定理的要点是:首先建立一个压缩映射,然后再考察其解空间的完备性。
It is important for a given integrated equation to research the solution' s existence and uniqueness of integrated equation. Inthis paper, when|λ| is small enough, we prove that this equation φ(x)=f(x)+λ∫a bK(x,ξ)φ(ξ)dξ, exists a unique eontinuous solution by using Picard' s asymptotic approximation and theory of Banach fixed point, respectively. The former need establish an asymptotic sequence, research domain, convergence and limit of the sequence. The latter need construct a compressed map and then prove that itg complete.
出处
《安阳工学院学报》
2006年第1期71-74,共4页
Journal of Anyang Institute of Technology
关键词
解的唯一性
Picard逼近法
BANACH不动点定理
solution's existence and uniqueness
Picard's asymptotic approximation
theory of Banach fixed point.