摘要
An experimental study on the microstructures of a rapid directionally solidified metallo-eutectic Sn-Cu alloy was carried out. This material is an important alloy that is used as a lead-free solder. The results showed that the kinetic undercooling due to the rapid solidification process led to the formation of a pseudoeutectic zone, whereas the hypereutectic reaction produced the regular lamellar structure in the hypereutectic Sn-1.0Cu alloy. The corresponding arm spacing in the obtained lamellar phases decreased gradually with the increase of the applied cooling rate, which corresponded well with the prediction of a rapid directional solidification model.
基金
This work was financially supported by the National Natural Science Foundation of China (No. 50401003), Fok Ying Tong Education Foundation (No. 104015), and the Natural Science Foundation of Tianjin City (No. 033608811).