摘要
在分析了纺织生产特性的基础上,选出了适合表示纺织生产状态的状态变量,导出了描述纺织生产过程的状态方程,设计出了适于纺织生产状态估计并具有线性最小方差特点的估计算法-卡尔曼滤波器,并讨论了滤波器的稳定性。若将纺织生产过程看成一个三阶系统,即假定生产指标变化的加速度是一个仅受随机因素(系统噪声)影响的常数,并分别取指标数值本身、指标对时间的一阶导数和指标对时间的二阶导数作为系统状态变量的三个分量导出系统的状态方程,那么以此状态方程为基础可以设计出适用于纺织生产状态估计的卡尔曼滤波器,并且该滤波器是稳定的。
Based on the modern control theory, the state-equation, which is used to describe the textile production process, the corresponding Kalman filter and the its stability are described in detail. If we, firstly, consider the textile production process is approximately a three order system, that is, the acceleration of the changing speed of its quality index is a constant which is only influenced by random factors (system noise); secondly, choose the index itself, the changing speed of the index, and its acceleration respectively as the components of the state-vector; thirdly, uses the state-vector to set up the state-equation of textile production system, Kalman filter can then be derived. Furthermore, the filter is stable.
出处
《中国纺织大学学报》
CSCD
1996年第6期87-95,共9页
Journal of China Textile University
关键词
纺织生产
最优估计
滤波
状态方程
textile process, optimum estimation, filting, state-equation