期刊文献+

自体骨髓间充质干细胞复合β-磷酸三钙修复犬下颌骨节段缺损 被引量:4

Repair of canine segmental mandibular defects by using autogenous bone marrow stromal cells andβ-tricalcium phosphate
原文传递
导出
摘要 目的探讨骨髓间充质干细胞(BMSCs)复合β-磷酸三钙(β-TCP)构建的组织工程骨修复犬下颌骨节段缺损的可行性方法体外成骨诱导犬BMSCs,将第2代细胞复合β- TCP后修复6只犬右侧3cm的下颌骨节段缺损;6只犬以单纯β-TCP植入作为对照,术后4,12,26,32周分别通过影像学、大体形态、组织学和生物力学检测判断骨缺损的修复效果。结果诱导后第2代细胞已具成骨活性。4~26周X线片示实验组新骨形成增加,密度增高,对照组则材料吸收形成明显阴影区,只有少量骨痂。32周实验组骨愈合良好,有较多板层骨;对照组为纤维性愈合骨不连,骨密度检测实验组显著高于对照组。实验组力学强度与正常下颌骨差异无统计学意义。结论自体成骨诱导BMSCs复合β-TCP形成的织工程骨可良好修复犬下颌骨节段缺损。 Objective To repair segmental mandibular defects with autogenous bone marrow stromal cells (BMSCs) and β-tricalcium phosphate. Methods Isolated BMSCs were in vitro expanded. A 3 cm-long segmental mandibular defect was created at right mandible in 12 canines, of which defects in six canines were repaired with BMSCs and β-tricalcium phosphate (β-TCP) and that in other six cases repaired with β-TCP, which was used as control. The engineered bone was evaluated by X-ray, CT, DXA, gross and histological examination, immunohistochemistry and biomechanical test 4,12,26,32 weeks after operation respectively. Results In induced BMSCs, histochemistry showed AKP activity. Oral X-ray showed obvious callus formation 4-26 weeks after operation in experimental group but minimal bone formation in control group. At 32 weeks after operation, gross observation, X-ray and CT demonstrated well bony-union in experimental group but bony-nonunion in control group. DXA indicated that the bone density of experimental group was significantly higher than that of control group. Biomechanical test revealed no statistical difference upon mechanical strength of mandibula between experimental group and normal group. Conclusions Canine segmental mandibular defects can be well repaired with the tissueengineered bone generated by autogenous osteogenic BMSCs and β-TCP scaffold.
出处 《中华创伤杂志》 CAS CSCD 北大核心 2006年第9期663-668,共6页 Chinese Journal of Trauma
基金 国家重点基础研究发展规划资助项目(G1999054308)国家高新技术研究发展计划资助项目(2002AA205011)
关键词 下颌损伤 骨髓基质干细胞 Β-磷酸三钙 组织工程 Mandibular injuries Bone marrow stromal cells β-tricalcium phosphate Tissue engineering
  • 相关文献

参考文献12

  • 1Schliephake H,Knebel JW,Aufderheide M,et al.Use of cultivated osteoprogenitor cells to increase bone formation in segmental mandibular defects:an experimental pilot study in sheep.Int J Oral Maxillofac Surg,2001,30:531 -537.
  • 2Yuan H,Yang Z,De Bruij JD,et al.Material-dependent bone induction by calcium phosphate ceramics:a 2.5-year study in dog.Biomaterials,2001,22:2617-2623.
  • 3Boo JS,Yamada Y,Okazaki Y,et al.Tissue-engineered bone using mesenchymal stem cells and a biodegradable scaffold.J Craniofac Surg,2002,13:231-239.
  • 4Evans GH,Yukna RA,Sepe WW,et al.Effect of various graft materials with tetracycline in localized juvenile periodontitis.J Periodontol,1989,60:491-497.
  • 5Lemperle SM,Calhoun CJ,Curran RW,et al.Bony healing of large cranial and mandibular defects protected from soft-tissue interposition:a comparative study of spontaneous bone regeneration,osteoconduction,and cancellous autografting in dogs.Plast Reconstr Surg,1998,101:660 -672.
  • 6袁捷,殷德民,王敏,许锋,崔磊,刘伟,曹谊林.犬骨髓基质干细胞复合珊瑚羟基磷灰石皮下成骨的实验研究[J].中国口腔颌面外科杂志,2005,3(3):207-211. 被引量:9
  • 7Lu J,Descamps M,Dejou J,et al.The biodegradation mechanism of calcium phosphate biomaterials in bone.J Biomed Mater Res,2002,63:408 -412.
  • 8Dong J,Uemura T,Shirasakie Y,et al.Promotion of bone formation using highly pure porous β-TCP combined with bone marrow-derived osteoprogenitor cells.Biomaterials,2002,23:4493 -4502.
  • 9Lu JX,Flautre B,Anselme K,et al.Role of interconnections in porous bioceramics on bone recolonization in vitro and in vivo.J Mater Sci Mater Med,1999,10:111-120.
  • 10Bruder SP,Jaiswal N,Ricalton NS,et al.Mesenchymal stem cells in osteobiology and applied bone regeneration.Clin Orthop,1998,355 Suppl:S247-S256.

二级参考文献8

  • 1祝联,崔磊,王敏,王倬,刘伟,曹谊林.应用珊瑚及骨髓基质干细胞复合物修复股骨缺损的实验研究[J].中华骨科杂志,2003,23(8):483-488. 被引量:25
  • 2[1]Oreffo RO, Triffitt JT. Future potentials for using osteogenic stem cells and biomaterials in orthopedics [J]. Bone, 1999,25(2 Suppl):S5- S9.
  • 3[2]Nagatomi J, Arulanandam BP, Metzger DW, et al. Frequency- and duration-dependent effects of cyclic pressure on select bone cell functions[J]. Tissue Eng, 2001, 7(6):717-728.
  • 4[3]Pavlin D, Dove SB, Zadro R, et al. Mechanical loading stimulates differentiation of periodontal osteoblasts in a mouse osteoinduction model:effect on type Ⅰ collagen and alkaline phosphatase genes[J].Calcif Tissue Iht, 2000, 67: 163-172.
  • 5[4]Pavlin D, Zadro R. Temproal pattern of stimulation of osteoblastassociated genes during mechanically-induced osteogenesis in vivo: early response of osteocalin and type Ⅰ collagen[J]. Connect Tissue Res, 2001, 42:135-148.
  • 6[5]Gluhak-Heinrich J, Ye L, Bonewald LF, et al. Mechanical loading stimulates dentin matrix protein 1 (DMP1) expression in osteocytes in vivo[J]. J Bone Miner Res, 2003, 18(5):807-817.
  • 7[6]Wang L, Cowin SC, Weinbaum S, et al. Modeling tracer transport in an osteon under cyclic loading[J]. Ann Biomed Eng, 2000, 28(10):1200-1209.
  • 8[7]Goshima J, Goldberg VM, Caplan AI. The Osteogenic potential of culture-expanded rat marrow mesenchymal cells assayed in vivo in calcium phosphate ceramic blocks[J]. Clin Orthop, 1991, 262:298-311.

共引文献10

同被引文献65

引证文献4

二级引证文献22

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部