期刊文献+

交通量预测的支持向量机回归法 被引量:3

SVMR Model on Short-time Forecasting of City Road Traffic Flow
下载PDF
导出
摘要 针对目前交通量预测中所广泛采用的基于经验风险最小化的BP网络易于陷入局部最优解等缺点,一种新的预测方法——基于结构风险最小化的SVMR交通量预测模型经实践证明能够较好地解决道路交通量预测问题。 BP network based on experimental risk minimization is easy plunging into local minimization in forecasting the city road traffic flow. Aiming at this defect, a new prediction method SVMR model based on structural risk minimization is proved being useful in short-time forecasting of the city road traffic flow.
出处 《交通标准化》 2006年第9期158-161,共4页 Communications Standardization
关键词 支持向量机 交通量预测 回归 support vector machine traffic flow forecasting regression
  • 相关文献

参考文献8

二级参考文献18

  • 1丁蕾,陶亮.支持向量机在胆固醇测定中的应用[J].安徽大学学报(自然科学版),2005,29(2):60-63. 被引量:6
  • 2Liu K. Comparison of very short-term load forecasting technique[J]. IEEE Trans. Power Systems, 1996,11(2): 877-882.
  • 3Hippert H S, Pefreira C E, Souza R C. Neural network for short-term load forecasting: A review and evaluation[J].IEEE Trans. Power System. 2001,16(2): 44-54.
  • 4Muller K R, Smola A J, Ratsch G, et al.Prediction time series with support vector machines[C].In Proc of ICANN'97., Springer LNCS 1327, Bedin,1997, 999-1004.
  • 5Papadakis S E, Theocharis J B, Kiartzis S J, et al. A novel approach to short-term load forecasting using fuzzy neural net-works[J].IEEE Trans. Power Systems, 1998,13(2):480-492.
  • 6Vapnik V, Golowich S, Smola A. Support vector method for function approximation, regression estimation, and signal processing[M].Cambridge, MA, MIT Press, 1997, 281-287.
  • 7Smola A J. Regression estimation with support vector learning machines[D]. Technische Universit"at M" unchen.1996.
  • 8Vapnik V N. The nature of statistical learning theory[M]. New York:Springer, 1995.
  • 9Mukherjee S, Osuna E, Girosi F. Nonlinear prediction of chaotic time series using support vector machines[C]. Proceedings of NNSP '97,Amelia Island,FL,1997.
  • 10Smola A J, Scholkopf B. A tutorial on support vector regression[R].NeuroCOLT Tech. Rep.TR 1998-030,Royal Holloway College,London, U.K,1998.

共引文献295

同被引文献24

引证文献3

二级引证文献16

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部