期刊文献+

修剪算法的信息几何分析

Information Geometric Analysis of Pruning Algorithm
下载PDF
导出
摘要 修剪法是确定和优化神经网络结构的重要方法之一.当前对修剪法的研究大多集中在方法描述上,对于修剪法内在机理的研究尚不多见,而研究修剪的内在机理可以为修剪策略提供理论基础和依据.从信息几何的角度研究了修剪法的内在机理,给出了神经网络结构修剪法的信息几何理论解释,利用神经流形参数结构的层次性,将修剪法表述为一系列从当前模型流形到其子流形的信息投影过程,在此基础上提出了新的修剪算法,并给出了算法可行性与有效性的实验验证. Pruning algorithm is an important method to set up and optimize the structure of neural network model. The research on pruning nowadays mostly focuses on the algorithm description while less effort is spent on its immanent mechanism. Research on its mechanism can provide theoretical basis for pruning strategy. The immanent mechanism of pruning is analyzed based on information geometry and a set of theoretical explanation of pruning is given. The pruning process is depicted as a series of information projections from the current model manifold to its submanifolds utilizing the hierarchical structure of neural manifold parameter space. A new pruning algorithm is presented based on the theoretical analysis and its validity and the efficiency is verified by experiments.
出处 《计算机研究与发展》 EI CSCD 北大核心 2006年第9期1609-1614,共6页 Journal of Computer Research and Development
基金 国家自然科学基金项目(60373029) 教育部博士点基金项目(20020004020) 北京交通大学科技基金项目(2005RC044)
关键词 修剪法 信息几何 神经流形 信息投影 pruning information geometry neural manifold information projection
  • 相关文献

参考文献12

  • 1fgG Bebis, M Georgiopoulos. Feed-forward neural networks:Why network size is so important [J]. IEEE Potentials, 1994,13(4) : 27-31
  • 2T Kavzaglu. Determining optimum structure for artificial neural networks [C] . The 24th Annual Technical Conf and Exhibition of the Remote Sensing Society, Cardiff, UK, 1999
  • 3S E Fahlman, C Lebiere. The cascade-correlation learning architecture [G]. In: Advances in Neural Information Processing Systems. San Francisco: Morgan Kaufmann, 1990.524-532
  • 4J Sietsma, R J Dow. Neural net pruning-Why and how [C].IEEE Int'l Conf on Neural Networks, San Diego, 1988
  • 5R Reed. Pruning algorithms-A survey [J]. IEEE Trans on Neural Network, 1993, 4(5) : 740-747
  • 6S Amari. Differential-Geometrical Methods in Statistics [G].In: Lecture Notes in Statistics. Berlin: Springer-Verlag, 1985
  • 7S Amari. Information geometry of the EM and EM algorithm for neural network. Neural Networks, 1995, 8(9): 1379-1408
  • 8孟大志,刘蓉.信息几何-计算神经科学的几何学方法[J].生物物理学报,1999,15(2):243-248. 被引量:2
  • 9罗四维,温津伟.神经场整体性和增殖性研究与分析[J].计算机研究与发展,2003,40(5):668-674. 被引量:10
  • 10S Amari. Information geometry on hierarchical of probability distributions [J ]. IEEE Trans on Inf Theory, 2001, 47 (5) :1701-1711

二级参考文献13

  • 1陈省身 陈维桓.微分几何讲义[M].北京:北京大学出版社,1980..
  • 2Jacobs, Jordan. Adaptive mixtures of local experts. Neural Computation, 1991, 2(3) : 79-87.
  • 3R E Sehapire. The strength of weak learnability. Machine Learning, 1990, 5(2): 197-227.
  • 4S Amari. Information geometry. Contemporary Mathematics,1977, 20(3): 81-95.
  • 5S Amari. Information geometry of EM and EM algorithm for neural networks. Neural Networks, 1995, 8(9): 1379-1408.
  • 6S Amari, K Kurata, H Nagaoka. Information geometry of Boltzmann machines. IEEE Trans on Neural Networks, 1992, 3(2) : 260-271.
  • 7S Amari. Dualistic geometry of the manifold of higher-order neurons. Neural Networks, 1991, 4(4): 443-451.
  • 8S Amari. Differential geometrical methods in statistics. Springer Lecture Notes in Statistics, Vol 28, New York: Springer-Verlag,1985.
  • 9L K Hansen, P Salamon. Neural network ensembles. IEEE TPAM, 1990, 12(10): 993-1001.
  • 10Jordan, Jacobs. Hiearchical mixtures of experts and the EM algorithm. Neural Computation, 1994, 2(6) : 181-214.

共引文献9

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部