期刊文献+

基于不同风险度量的投资组合模型实证分析 被引量:1

The Empirically Analysis of Portfolio Optimization Models Based on Different Measure of Risk
下载PDF
导出
摘要 利用上海证券市场的实际交易数据对半绝对离差模型,基于分位数的绝对离差模型(Ruszczynski&Vanderbei,2003)以及MV模型进行了实证比较.通过分析各模型的全局最小风险组合,计算发现,半绝对离差模型比其他模型具有更好的样本外业绩. This paper compare portfolio optimization models based on different risk measurement using data from Shanghai securities market. We compares the global minimum risk portfolios of the different models:semi-absolute deviation model,weighted absolute deviation from the quantile model( Ruszczynski & Vanderbei,2003)and mean-variance model. The empirical study shows that semi-absolute deviation model is superior to the other two models and weighted absolute deviation from the quantile model is better than the mean-variance model.
机构地区 贵州大学数学系
出处 《贵州大学学报(自然科学版)》 2006年第3期249-253,共5页 Journal of Guizhou University:Natural Sciences
基金 贵州省自然科学基金资助项目(黔科教合J(2005)2002号)
关键词 投资组合模型 风险度量 随机占优 portfolio optimization model risk measurement stochastic dominance
  • 相关文献

参考文献18

  • 1MARKOWITZ H. Portfolio selection [ J ]. Journal of Finance, 1952,7:77 - 91.
  • 2KONNO H. , YAMAZAKI H. Mean-absolute deviation portfolio optimization model and its applications to Tokyo stockmarket [ j ]. Management Science,1991,37(5) :519 -531.
  • 3MANSINI R. , SPERANZA, M. G. Heuristic algorithm for the portfolio selection problem with minimum transaction lots [ J ]. European Journal of Operational Research, 1999,114:219 - 233.
  • 4OGRYCZAK W. , RUSZCZYNSKI A. From stochastic dominance to mean-risk models:Semideviation as risk measures [ J ]. European Journal of Opereation Research, 1999,116 ( 1 ) : 33 - 50.
  • 5KONNO H. , YAMAMOTO R. Minimal concave cost rebalance of a portfolio to the efficient frontier[ J ]. Mathematical Programming, Ser. B ,2003, 97:571 -585.
  • 6JOSST N J, HORNIMAN M. , etc. Computational aspects of alternative portfolio selection models in the presence of discrete asset choice constraints[ J ]. Quantitative Finance,2001 , 1 : 1 - 13.
  • 7PORTER R B Semi-variance and stochastic dominance : Acomparison [ J ]. American Economic Review, 1974,64:200 - 204.
  • 8GOTOH J., KONNO H. Third degree stochastic dominance and mean -risk analysis[ J ]. Management Science,2000,46(2) :289 -301.
  • 9OGRYCZAK W. , RUSZCZYNSKI A. Dual stochastic dominance and relatedmean - riskmodels [ J ]. SIAMJ. Optimization ,2002,13:60 - 78.
  • 10RUSZCZYNSKI A. ,VANDERBEI R J Frontiers of stochastically nondominated portfolios[ J]. Econometrica,2003,71 (4) :1287 -1297.

二级参考文献10

共引文献94

同被引文献8

引证文献1

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部