期刊文献+

生成元为线性增长函数的反射倒向随机微分方程

Backward SDEs with two barriers and growth coefficient
下载PDF
导出
摘要 利用了用Lipschitz函数逼近线性增长函数的方法研究了生成元函数为线性增长函数,并且带有两个反射界面的反射倒向随机微分方程,证明了其解的存在惟一性定理. By using the approaching technique, the existence and unique theorem of the solution of one-dimensional backward stochastic differential equations with two reflecting barriers and linear growth coefficient are established.
出处 《山东大学学报(理学版)》 CAS CSCD 北大核心 2006年第4期57-60,共4页 Journal of Shandong University(Natural Science)
关键词 反射倒向随机微分方程 线性增长 生成元 BSDEs with reflecting barriers linear growth generators
  • 相关文献

参考文献7

  • 1Pardoux E,Peng S.Adapted solution of a backward stochastic differential equationt[J].Systems & Control Letters,1990,14:55~61.
  • 2El Karoui N,Kapoudjian C,Pardoux E,et al.Reflected solutions of backward SDE's and related obstacle problems for PDE's[J].The Annals of Probability,1997,25:702~737
  • 3Cvitanic J,Karatzas I.Backward stochastic differential equations with reflection and dynkin games[J].The Annals of Probability,1996,24:2 024~2 056.
  • 4Matoussi A.Reflected solutions of backward stochastic differential equations with eontinuous coeffieient[J].Statistics & Probability Letters,1997,34:347~354.
  • 5Lepeltier J,Martin S.Backward stochastic differential equations with continuous coefficient[J].Statistics & Probability Letters,1997,32:425~430.
  • 6Bahlali K,Hamadene S,Mezerdi B.Backward stochastic differential equations with two reflecting barriers and continuous with quadratic growth coefficient[J].Stochastic Processes and their Applications,2005,115:1 107~1 129.
  • 7Saisho Y.SDE for multidimensional domains with reflecting boundary[J].Probability Theory and Related Fields,1987,74:455~477.

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部