摘要
在对概率神经网络(PNN)的分类机理、输入向量选取和网络设置进行分析的基础上,建立了用于识别两类事件模式(无事件模式和有事件模式)的事件检测PNN模型。采用高速公路路段I.880实地线圈数据集和事件数据集验证模型,通过比较PNN模型与多层前向神经网络(MLF)模型的结果,发现无论对于向北、向南或混合方向的高速公路事件检测,PNN模型的检测率(DR)比MLF模型高;平均检测时间(MTTD)比MLF模型短;但误报率(FAR)也较高。概率神经网络是高速公路事件检测的一种有效算法,其在理论基础、算法和学习速度等方面比多层前向神经网络具有优势。
This paper investigates the classification, input variables and settings of probabilistic neural network, including model development and simulation by I-880 database. Comparison of PNN and MLF simulation results show that DR and MTTD is achieved by PNN are better than MLF, FAR is inferior than MLF whether in north-toward, south-toward and two direction freeway incident detection. PNN is an effective algorithm in incident detection and is superior to MLF in theory, training numbers and learning speed.
关键词
事件检测
概率神经网络
多层前向神经网络
Incident Detection, PNN(probabilistic neural network), MLF(multi-layer feed-forward neural networks)