期刊文献+

微生物之间竞争模型的全局分析 被引量:1

Global Analysis of a Competitive Model
下载PDF
导出
摘要 本文讨论具有再生养分流的具有质粒与不具有质粒微生物之间竞争的数学模型.假定再生养分流不具有时滞时,我们对的模型的平衡位置进行了全局分析. This paper concerns a model of plasmid-bearing and plasimid -free comptition with instantaneous nutrient recycling. We give a global analysis for equilibrium of model.
作者 陆志奇
出处 《河南师范大学学报(自然科学版)》 CAS CSCD 1996年第4期1-4,共4页 Journal of Henan Normal University(Natural Science Edition)
基金 河南省教委资助
关键词 恒化器 生态学 微生物 竞争模型 nutrient recycling chemostat: plasmid -bearing and plasmid - free competition
  • 相关文献

同被引文献9

  • 1Ryder D F, Dibiasio D. An operational strategy for unstable recombinant DNA cultures. Biotech-nology and Bioengineering, 1984;26: 942-947.
  • 2Stephanepoulis G, Lapidas G. Chemostat dynamics of plasmid-bearing and plasmid-free mixed recombinant cultures. Chem Engng Sci, 1988 ; 43 : 49-57.
  • 3Hsu S B, Waltman P. Competition between plasmid-bearing and plasmid-free organisms in selective media. Chemical Engineering Science, 1997 ;52 : 23-35.
  • 4Lu Z Q, Hadeler K P. Model of plasmid-bearing, plasmid-free competition in the chemostat with nutrient recycling and an inhibitor. Math Bios, 1998 ; 148 : 147-159.
  • 5Smoller J. Shock waves and reaction-diffusion equations. SpringerVerlag, 1983.
  • 6Hsu S B, Waltman P. On a system of reaction-diffusion equations arising from competition in an unstirred chemostat. SIAM J Appl Math, 1993 ; 53 : 1026-1044.
  • 7Hale J K. Asymptotic behavior of dissipative systems. American Mathematical Society Providence RI,1988.
  • 8Hale J K, Waltman P. Persistenee in infinite-dimensional systems. SIAM J Math Anal, 1989; 20:388-295.
  • 9Cantrell R S, Cosner C, Hutson V. Permanence in some diffusive Lotka-Voherra models for three interacting species. Dynam systems Appl, 1993; 2:505-530.

引证文献1

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部