摘要
设Г是奇数阶阿贝尔群上的4-正则连通凯莱图.讨论了的边着色问题,其中e1,e2是Г的任意两边.通过研究Г的哈密顿分解,得出如下结果:对Г的任意两条边e1,e2,存在Г的一个哈密顿分解分离e1,e2;进而证明是第一类的.
Supposing Г to be a 4-regtilar connected Cayley graph on an abelian group of odd order, the edge-coloring problem ofГ-{e1,e2 } is discussed in this paper,where e1, e2 are two arbitrary edges of Г. After detailed studies of the hamiltonian decomposition of Г, it is seen that for any two edges e1, e2 of Г, there exists a hamiltonian decomposition of Г to seperate e1, e2. With this result, it is concluded that Г- {e1, e2} is of class Ⅰ.
出处
《北京理工大学学报》
EI
CAS
CSCD
1996年第6期571-575,共5页
Transactions of Beijing Institute of Technology
关键词
凯莱图
边着色
边临界性
哈密顿分解
简单图
Cayley graph
edge-coloring
2-edge critical property
hamiltonian decomposition