期刊文献+

锂金属与室温熔盐相互作用的电化学和SEM研究 被引量:5

STUDY ON THE INTERACTION BETWEEN LITHIUN AND AMBIENT MOLTEN SALT BY ELECTROCHEMICAL METHODS AND SEM
下载PDF
导出
摘要 用电化学交流阻抗、循环伏安法和扫描电镜方法研究了锂和1-甲-3-乙咪唑氯化物/AlCl3室温熔盐体系的相互作用.结果表明,锂与该室温熔盐体系发生快的化学反应,生成两种钝化膜.它们有很高的电阻率,且不能保护锂不再受到侵蚀.在阳极极化时,锂的表面生成稳定的阳极钝化膜.电极表面的化学钝化膜和阳极钝化膜都使锂的电沉积-溶出过程变得很不可逆.因此,如果仅用1-甲-3-乙咪唑氯化物/AlCl3室温熔盐体系做为高能电池的非水电解质,不论是在一次电池中还是在二次电池中。 The interaction between lithium and the ambient molten salt, 1-methyl-3-ethylimidazolium chloride/AlCl 3 system, has been studied using electrochemical impedance, cyclic voltammetry and scanning electron microscope. It is indicated that lithium reacts rapidly with the melt and two kinds of passitive film are formed on the lithium surface. Their conductivity is very low, but they can not protect the lithium from corrosion by the melt. Upon anodic polarisation stable anodic passitive films are formed on the surface of lithium. Both chemical and anodic passitive films cause that the plating-stripping process of the lithium is extremely irreversible. Thus, if the surface of the lithium is not modified by another chemical, it can be directly used into above melen salt system as a negtive electrode neither in the primary battery nor in the secondary battery.
出处 《青岛大学学报(自然科学版)》 CAS 1996年第4期1-10,共10页 Journal of Qingdao University(Natural Science Edition)
关键词 室温熔盐 锂金属 相互作用 电化学 熔盐 SEM room-temperature melten salt lithium battery surface film electrochemical impedance SEM passivation
  • 相关文献

同被引文献59

  • 1张亚利,吴秉亮,查全性.Li/LiClO_4-碳酸丙烯酯体系的交流阻抗研究[J].物理化学学报,1989,5(5):572-577. 被引量:2
  • 2蒋晶,高德淑,李朝晖,苏光耀,王承位,刘黎,丁燕怀.原位聚合制备的离子液体/聚合物电解质的研究[J].高等学校化学学报,2006,27(7):1319-1322. 被引量:10
  • 3HONGHE Z,JIANHUA Q,YANG Z,et al.Temperature dependence of the electrochemical behavior of LiCoO2 in quaternary ammonium-based ionic liquid electrolyte[J].Solid State Ionics,2005,176(29-30):2 219-2 226.
  • 4EGASHIRA M,OKADA S,YAMAKI J,et al.The preparation of quaternary ammonium-based ionic liquid containing a cyano group and its properties in a lithium battery electrolyte[J].J Power Sources,2004,138(1-2):240-244.
  • 5EGASHIRA M,OKADA S,YAMAKI J,et al.Effect of small cation addition on the conductivity of quaternary ammonium ionic liquids[J].Electrochimica Acta,2005,50(18):3 708-3 712.
  • 6SAKAEBE H,MATSUMOTO H.N-Methyl-N-propylpiperidinium bis (trifluoromethane-sulfonyl) imide (PP13-TFSI)-novel electrolyte base for Li battery[J].Electrochem Commun,2003,5(7):594-598.
  • 7NOLENE B,PATRICK C H,DOUGLAS R M,et al.The zwitterion effect in ionic liquids:Towards practical rechargeable lithiummetal batteries[J].Adv Mater,2005,17(20):2 497-2 501.
  • 8MATSUMOTO H,SAKAEBE H,TATSUMI K.Preparation of room temperature ionic liquids based on aliphatic onium cations and asymmetric amide anions and their electrochemical properties as a lithium battery electrolyte[J].J Power Sources,2005,146(1-2):45-50.
  • 9HONGHE Z,KAI J,TAKESHI A,et al.Electrochemical intercalation of lithium into a natural graphite anode in quaternary ammonium-based ionic liquid electrolytes[J].Carbon,2006,44 (2):203-210.
  • 10SEKI S,KOBAYASHI Y,MIYASHIRO H,et al.Reversibility of lithium secondary atteries using a room-temperature ionic liquid mixture and lithium metal[J].Electrochemical and Solid-State Letters,2005,8(11):A 577-A 578.

引证文献5

二级引证文献14

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部