期刊文献+

美国黄松、班克松和油松的抗寒性比较 被引量:21

Cold hardiness of Pinus ponderosa, P. banksian and P. tabulaeformis.
下载PDF
导出
摘要 通过人工冰冻和电导率的测定,对黄土丘陵沟壑区引种载培的美国黄松、班克松和乡土树种油松的抗寒性进行了鉴定,并探讨其抗寒机理.结果表明,班克松的抗寒性比油松强,而美国黄松的抗寒性比油松稍弱.班克松的束缚水/自由水比值高达7·0,组织中ABA含量高达164·3μg·g-1FW;但可溶性糖和K+含量较低,分别为12·0%和2450μg·g-1DW.油松则是可溶性糖、K+和ABA含量都较高,分别为18·68%、4538μg·g-1DW和95·8μg·g-1FW;束缚水/自由水比值较低,为2·58.美国黄松的可溶性糖含量较高,18·05%;但束缚水/自由水比值、K+和ABA含量都较低,分别为2·18、2275μg·g-1DW和63·3μg·g-1FW,可能是其抗寒性较弱的内在原因.班克松较低的叶绿素含量和较高的类胡萝卜素/叶绿素比值对其抗寒性也有贡献.说明3种树种虽然都是抗寒树种,但其内在机理仍有差异. By the method of artificial freezing, this paper made a comparative study on the cold hardiness of Pinus ponderosa, P. banksiana and P. tabulaeformis, with their inherent mechanisms approached. The results showed that the cold hardiness of these three species was in the sequence of P. banksiana 〉 P. tabulaeformis 〉 P. ponderosa. P. banksiana had high bound water/free water ratio (7.0) and ABA content (164. 3 μg · g^-1 FW) but low K^+ (2 450 μg · g^-1 DW) and soluble sugar ( 12.0% ), P. tabtdaeformis had higher contents of ABA (95.8 μg · g^-1 FW), K^+ (4 538 μg·g^-1 DW) and soluble sugar (18.68%) but low bound water/free water ratio (2. 58), while P. ponderosa had high soluble sugar content (18.05%) but low bound water/free water ratio (2. 18) and K^+ (2 275 μg·g^-1 DW) and ABA (63.3 μg · g^-1 FW) contents. These differences might be the reasons resulting in the different cold hardiness of these three species. Low chlorophyll content and high carotenoid/chlorophyll ratio might also contribute to the cold hardiness of P. banksiana. Therefore, though the test species are all of cold hardiness, their inherent mechanisms may be different.
出处 《应用生态学报》 CAS CSCD 北大核心 2006年第8期1389-1392,共4页 Chinese Journal of Applied Ecology
基金 国家林业局"948"技术引进项目 陕西省林业厅西部造林工程资助项目.
关键词 美国黄松 班克松 油松 抗寒性 ABA Pinus ponderosa, P. banksiana, P. tabulaeformis, Cold hardiness, ABA.
  • 相关文献

参考文献28

  • 1Beck EH,Heim R,Hansen J.2004.Plant resistance to cold stress:Mechanisms and environmental signals triggering frost hardening and dehardening.J Biosci,29:449~459.
  • 2Bigras FJ,Colombo SJ.2001.Conifer Cold Hardiness.Dordrecht:Kluwer.165~186.
  • 3陈屏昭,王磊,代勋,刘忠荣,蒋彬,樊钦平.缺磷强光下脐橙的过剩能量耗散机制[J].应用生态学报,2005,16(6):1061-1066. 被引量:27
  • 4冯玉龙,张亚杰,朱春全.根系渗透胁迫时杨树光合作用光抑制与活性氧的关系[J].应用生态学报,2003,14(8):1213-1217. 被引量:32
  • 5Gao J-F (高俊凤).2000.Experiment Technology of Plant Physiology.Xi'an:World Books Press.(in Chinese).
  • 6Gillies SL,Vidaver W.1990.Resistance to photo damage in evergreen conifers.Physiol Plant,80:148~153.
  • 7Gilmore AM.1997.Mechanistic aspects of xanthophylls cycle dependent photoprotection in higher plant chloroplasts and leaves.Physiol Plant,99:197~209.
  • 8Gusta LV,Fowler DB.1976.Effects of temperature on dehardening and rehardening of winter cereals.Can J Plant Sci,56:673~678.
  • 9Jin YH,Tao DL,Hao ZQ.2003.Environmental stresses and redox status of ascorbate.Acta Bot Sin,45:795~801.
  • 10JinYH(靳月华) TaoDL DuYJ.Freezing tolerance, pigments and SOD of fiveconifers in Shenyang[J].植物学报,1990,32:702-706.

二级参考文献54

共引文献358

同被引文献374

引证文献21

二级引证文献315

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部