期刊文献+

基于滑动概率神经网络的早期故障诊断 被引量:3

Incipient Fault Diagnosis Based on Moving Probabilistic Neural Network
下载PDF
导出
摘要 针对机电设备早期故障难以识别的问题,提出了一种动态的概率密度估计方法———滑动概率神经网络,用以跟踪分析测量信号的概率密度变化过程,及时发现早期故障.该网络以固定不变的抽样集作为第一层,动态滑动的测量信号作为样本层,通过求和层得到抽样集的条件概率密度估计,将样本层内测量信号的概率密度动态地投影到统一的抽样集上.将网络分解成以测量值为中心的子网络,来实现网络的递归运算,并且利用高斯函数的快速衰减特性或使用分段线性函数近似高斯函数,从而提高了网络的计算实时性.通过压缩机喘振过程数据的应用实例,表明该方法能够有效识别故障的早期征兆. A new probability density tracing analysis method named moving probability neural networks (MPNN) is proposed to identify the incipient fault of electromechanical equipment. The MPNN is a three-layer network: the first layer consists of invariable sample set, dynamic signal is moved into the second layer, and condition probability density estimation of sample set is the output of the third layer. So the probability density of signal is continuously projected to the uniform sample set. The recursive algorithm is achieved by dividing the network into subnets. Using the attenuation characteristic of Gaussian function or the piecewise-linear approximation for Gaussian function, the computational load of MPNN is reduced further. Finally, the surge process data of centrifugal compressor is analyzed via this network to verify the effectiveness for diagnosis of the incipient faults.
作者 张庆 徐光华
出处 《西安交通大学学报》 EI CAS CSCD 北大核心 2006年第9期1036-1040,共5页 Journal of Xi'an Jiaotong University
基金 国家自然科学基金资助项目(50335030) 国家发改委工业自动化高技术产业化专项资助项目(2004-2080-20)
关键词 滑动概率神经网络 概率密度估计 早期故障诊断 moving probabilistic neural networks probability density estimation incipient fault diagnosis
  • 相关文献

参考文献6

  • 1姜洪开,何正嘉,段晨东,陈雪峰.基于提升方法的小波构造及早期故障特征提取[J].西安交通大学学报,2005,39(5):494-498. 被引量:16
  • 2Chen Changzheng,Mo Changtao.A method for intelligent fault diagnosis of rotating machinery[J].Digital Signal Processing,2004,14(3):203-217.
  • 3Kin K,Parlos A G.Model-based fault diagnosis of induction motors using non-stationary signal segmentation[J].Mechanical Systems and Signal Processing,2002,16(2):223-253.
  • 4Parzen E.On estimation of a probability density function and mode[J].Annals of Mathematical Statistics,1962,33(8):1065-1076.
  • 5边肇棋,张学工.模式识别[M].2版.北京:清华大学出版社,2000:67-71.
  • 6Dremin I M,Furletov V I,Ivanov O V,et al.Precursors of stall and surge processes in gas turbines revealed by wavelet analysis[J].Control Engineering Practice,2002(10):599-604.

二级参考文献4

  • 1Daubechies I, Sweldens W. Factoring wavelet transform into lifting steps [J]. J Fourier Anal App, 1998, 4(3): 247-269.
  • 2Vetterli M, Herley C. Wavelets and filter banks: theory and design [J]. IEEE Trans on Acoust Speech Signal Processing, 1992,40(9): 2 207-2 232.
  • 3Sweldens W. The lifting scheme: a custom-design construction of biorthogonal wavelets [J]. Appl Comput Harmon Anal, 1996, 3(2): 186-200.
  • 4Swledens W. The lifting scheme: a construction of second generation wavelets[J]. SIAM J Math Anal, 1997, 29(2): 511-546.

共引文献16

同被引文献26

  • 1KIM Y S, KOLARIK W J. Real-time conditional reliability prediction from online tool performance data [J]. International Journal of Production Research, 1992, 30(8): 1831-1844.
  • 2GEBRAEEL N Z, LAWLEY M A, LI R, et al. Residual-life distributions from component degradation signals: a Bayesian approach [J]. lie Transactions, 2005, 37 : 543-557.
  • 3DONG M, HE D. A segmental hidden semi-Markov model (HSMM)-based diagnostics and prognostics framework and methodology [J]. Mechanical System and Signal Processing, 2007, 21: 2248-2266.
  • 4LU H, KOLARIK W J, I.U S S. Real-time performance reliability prediction [J]. IEEE Transactions on Reliability, 2001, 50(4): 353-357.
  • 5PARZEN E. On estimation of a probability density function and mode [J]. Annals of Mathematical Statistics, 1962, 33(8) : 1065-1076.
  • 6黄克智,薛明德,陆万明.张量分析[M].北京:清华大学出版社,2005.
  • 7朱瑾.Born近似方法和弹性波反问题的研究[D].哈尔滨:哈尔滨工业大学,1987.
  • 8吴喜之.非参数统计[M].北京:中国统计出版社,1992.
  • 9Frank P M. Residual evaluation for fault diagnosis based on adaptive fuzzy thresholds [ C ]. IEE Colloquium on Qualitative and Quantitative Modeling Methods for Fault Diagnosis, UK: IEE Press, 1995 :.
  • 10Kristan M, Leonardis A, Skocaj D. Multivariate online kernel density estimation with Gaussian kernels [J]. Pattern Recognition, 2011,44 (10): 2630 - 2642.

引证文献3

二级引证文献12

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部