期刊文献+

空间离群点的模型与跳跃取样查找算法 被引量:3

Spatial Outlier Model and Detection Algorithm with Leapingly Sampling
下载PDF
导出
摘要 目前无论是查找一般的离群点,还是空间离群点,都强调非空间属性的偏离,但在图像处理、基于位置的服务等许多应用领域,空间与非空间属性要综合考虑。为此,首先提出了一个综合考虑两者的空间离群点定义,然后提出了一种新的基于密度的空间离群点查找方法———基于密度的跳跃取样空间离群点查找算法DBSODLS。由于已有的基于密度的离群点查找方法对每一点都要求进行邻域查询计算,故查找效率低,而该算法由于可充分利用已知的邻居信息,即不必计算所有点的邻域,从而能快速找到空间离群点。分析与试验结果表明,该算法时间性能明显优于目前已有的基于密度的算法。 Existing work in outlier detection emphasizes the deviation of non-spatial attribute not only in outlier detecting in statistical database but also in spatial outlier detecting in spatial database. However, both spatial and non-spatial attributes must be synthetically considered in many applications, such as image processing, position-based service. We defined outlier in respect of taking account of both spatial and non-spatlal attributes and proposed a new density-based spatial outlier detecting approach with leapingly sampling( DBSODLS). Existing density-based outlier detection approaches must calculate neighborhoods of every object, which are time-consuming. This method makes the best of neighbor information that have been detected, leapingly selects the next object, but not every object, which reduces many neighborhood queries. Theoretical comparison shows this method is better than other density-based methods in efficiency, and the experimental results also show that the approach outperforms the existing density-based methods in efficiency.
出处 《中国图象图形学报》 CSCD 北大核心 2006年第9期1230-1236,共7页 Journal of Image and Graphics
基金 国家"863"计划资助项目(2001AA633010-04) 国家自然科学基金项目(49971063) 江苏省自然科学基金项目(BK2001045)
关键词 数据挖掘 空间离群点 空间数据库 影响域 data mining spatial outliers spatial database impact neighborhood
  • 相关文献

参考文献26

  • 1Hawkins D. Identification of outliers [M]. London: Chapman and Hall, 1980.
  • 2Dai H, Srikant R, Zhang C. OBE: Outlier by example[A]. In:Proceedings of the 8th Pacific-Asia Conference on Knowledge Discovery and Data Mining (PAKDD) [C], Sydney, Australia,2004: 222-234.
  • 3Shekhar S, Lu C T, Zhang P. A unified approach to detecting spatial outliers[J]. GeoInformatica, 2003, 7(2):139-166.
  • 4Lu C T, Chert D, Kou Y. Algorithms for spatial outlier detection[A]. In: Proceedings of the 3rd IEEE International Conference on Data Mining(ICDM) [C], Melbourne, Florida, USA, 2003: 597-600.
  • 5Knorr E M, Ng R T. A unified notion of outliers: properties and computation[A]. In: Proceedings of the International Conference on Knowledge Discovery and Data Mining(KDD) [C], Newport Beach,CA, USA, 1997:219-222.
  • 6Knorr E M, Ng R T. Algorithms for mining distance-based outliers in large datasets [A]. In: Proceedings of 24th Very Large Data Bases(VLDB) Conference[C], New York, USA, 1998: 392-403.
  • 7Ramaswamy S, Rastogi R, Kyuseok S. Efficient algorithms for mining outliers from large data sets [A]. In: Proceedings of the ACM International Conference on Management of Data(SIGMOD)'00 [C],Dallas, Texas, USA, 2000:93-104.
  • 8Arning A, Agrawal R, Raghavan P. A linear method for deviation detection in large databases [A]. In: Proceedings of Conference on Knowledge Discovery and Data Mining (KDD)'96 [C], Portland OR, USA, 1996:164-169.
  • 9Breunig M M, Kriegel H P, Ng R T, et al. LOF: Identifying density-based local outliers[A]. In: Proceedings of the ACM International Conference on Management of Data (SIGMOD)'00[C], Dallas,Texas, USA, 2000:427-438.
  • 10Preparata F, Shamos M. Computatinal geometry: an introduction[M]. New York: Springer Verlag, 1998.

同被引文献29

引证文献3

二级引证文献11

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部