期刊文献+

一种改进的多级信息安全过滤模型 被引量:5

一种改进的多级信息安全过滤模型
下载PDF
导出
摘要 本文在分析了网络主动信息服务模式中存在的安全问题以及常用的安全过滤方法的基础上,提出了一种改进的基于统计和知识特征的多级安全过滤模型,该模型可以进一步提高安全过滤的效率。 Based on the analysis of the security problems in network active information service and several commonly-used security filtering methods, this paper introduces an improved multilevel filtering model based on statistics and knowledge features. This model is expected to further improve the efficiency of security filtering.
出处 《情报理论与实践》 CSSCI 北大核心 2006年第5期615-617,共3页 Information Studies:Theory & Application
关键词 网络 信息服务 信息安全 信息过滤 network information service information security information filtering
  • 相关文献

参考文献5

二级参考文献21

  • 1The national laboratory for advanced network research[EB/OL].http://www. nlanr. net/.
  • 2Rawn Shah. Reducing network traffic with web caching[EB/OL]. http://www-900.cn.ibm.com/developerworks/cn/web.
  • 3Tames Gwertzman,Margo Seltzer. World wide web cache consistency [EB/OL] http://www.eecs.harvard.edu/~vino/web/usenix.
  • 4Belkin N J, Croft W B. Information filtering and information retrieval: two sides of the same coin? [J]. Communications of the ACM, 1992, 35(12):29-37.
  • 5Waldman M, Rubin A, Cranor L. Publius: a robust, tamper-evident, censorship-resistant web publishing system[A]. Proc of the 9th USENIX Security Symposium[C]. Denver, USA: [s.n.], 2000. 59-72.
  • 6Mladenic D. Text-learning and related intelligent agents: a survey[J]. IEEE Intelligent Systems, 1999, 14(4) 44-54.
  • 7Yang Y. Expert network: effective and efficient learning from human decisions in text categorization and retrieval[A]. In 17th Ann Int ACM SIGIR Conference on Research and Development in Information Retrieval (SIGIR'94)[C]. CA USA: [s.n.], 1994. 13-22.
  • 8Cheeseman P, Kelly J, Self M, et al. Autoclass: a bayesian classification system[A]. Proc Fifth Int Conf on Machine Learning[C]. San Mateo, CaJifornia: Morgan Kaufmann, 1988. 54-64.
  • 9Apte C, Damerau F, Weiss S. Text mining with decision rules and decision trees[A]. Proceedings of the Conference on Automated Learning and Discovery[C]. CMU, USA: [s.n.], 1998. 62-68.
  • 10Wiener E, Pedersen J O, Weigend A S. A neural network approach to topic spotting[A]. Proceedings of the Fourth Annual Symposium on Document Analysis and Information Retrieval (SDAIR'95)[C]. Las Vegas, USA: ISRI, Univ of Nevada, 1995. 58-62.

共引文献38

同被引文献35

引证文献5

二级引证文献7

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部