期刊文献+

基于小波多尺度特征的图像聚类检索 被引量:2

Wavelet Multi—scale Features Clustering Based Image Retrieval
下载PDF
导出
摘要 描述了一种图像数据库中基于小波多尺度特征内容的聚类检索方法。该方法对图像数据库中的图像进行小波多尺度分解并提取每一频段的矩和最低频段的小波系数分别作为其纹理特征和颜色特征。为提高检索效率,在图像被插入到图像数据库时对其进行基于多尺度矩的K均值聚类。检索时,将查询图像与聚类各簇的质心进行比较确定其相似簇,加上颜色特征计算查询图像与相似簇中各图像的相似性距离。实验证明:该方法由于综合考虑图像的纹理和颜色特征信息,因而具有较高的查准率和查到率,而聚类算法的应用使其有较高的检索速度。 A wavelet multi-scale features clustering based Image retrieval approach is proposed in this paper. This approach applies wavelet multi-scale decomposition to each image in image database and then extracts moments of every sub-band and lowest frequency sub-band wavelet dominant coefficients histogram as texture features and color features. Then a clustering techniques is developed to reduce the query time. Retrieval procedure is consist oftwo steps: ①determine similar cluster by compare texture distance between query image and centroid of every cluster. ②determine similar image by compute distance between query image and every image in similar cluster. The prototype system test demonstrate that this approach has high retrieval performance.
出处 《微计算机应用》 2006年第5期527-529,共3页 Microcomputer Applications
基金 湖北省自然科学基金项目(No.2004ABA043)。
关键词 图像检索 小波变换 聚类 Image Retrieval, wavelet Transform, Clustering
  • 相关文献

参考文献3

  • 1ISO/IEC JTC 1/SC 29/WG 1 N1646R,JPEG 2000 Image Coding System,JPEG 2000 Part Ⅰ Final Committee Draft Version 1.0,Date:16 March 2000
  • 2J.MacQueen.Some methods for classification and analysis of multivariate observations.Proceeding of the 5th Berkeley Symposium-1,1967,281~297
  • 3I.Daubechies,Orthonormal Bases of Compactly Supported Wavelets,Comm.Pure Appl.Math.,Vol.41,1988,906~996

同被引文献24

  • 1郭德军,宋蛰存.基于灰度共生矩阵的纹理图像分类研究[J].林业机械与木工设备,2005,33(7):21-23. 被引量:55
  • 2王惠明,史萍.图像纹理特征的提取方法[J].中国传媒大学学报(自然科学版),2006,13(1):49-52. 被引量:77
  • 3李丙春.基于共生矩阵的图像纹理特征提取及应用[J].喀什师范学院学报,2006,27(6):35-37. 被引量:16
  • 4陈洋,王润生.结合Gabor滤波器和ICA技术的纹理分类方法[J].电子学报,2007,35(2):299-303. 被引量:25
  • 5韩琳,杨明.基于小波变换的纹理特征提取分析[J].电脑知识与技术,2007(6):1395-1395. 被引量:8
  • 6E.M. Tamil, R. Hamzah, M. Y. I. Idris and A.M. Tamil. Feature Extraction for Biosignal Processing using HHT. N.A. Abu Osman, F. Ibrahim, W. A. B. Wan Abas, H.S. Abd Rahman, H.N. Ting (Eds.) : Biomed 2008, Proceedings 21, pp. 195 - 198, 2008
  • 7Lin Ma and Naimin Li. Texture Feature Extraction and Classification for Iris Diagnosis. School of Computer Science and Technology, Harbin Institute of Technology, 168 - 175, 2007.
  • 8Algorithms for Applied Digital Image Cytometry By CAROLINA WAHLBY, Comprehensive Summaries of Uppsala Dissertations from the Faculty of Science and Technology 896
  • 9Hu chuan Lu, Yingjie Huang , Yenwei Chen , Deli Yang. Automatic gender recognition based on pixel -pattern- based texture feature. 12 February 2008 . J Real - Time Image Proe ( 2008 ) 3 : 109 - 116
  • 10Jaime Melendez, Domenec Puig, and Miguel Angel Garcia. Comparative Evaluation of Classical Methods, Optimized Gabor Filters and LBP for Texture Feature Selection and Classification W. G. Kropatseh, M. Kampel, and A. Hanbury (Eds.) : CAIP 2007, LNCS 4673, pp. 912 - 920, 2007.

引证文献2

二级引证文献7

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部