期刊文献+

可换环上一类矩阵李代数的导子及自同构 被引量:2

Derivations and Automorphisms of a Matrix Lie Algebra Over a Commutative Ring
下载PDF
导出
摘要 以一类非可解矩阵李代数L为研究对象,利用分块矩阵的乘法运算,对L的导子及自同构进行了研究.借助于一种构造性证明的方法,证明了L的中心平凡且导子均为内导子,即L是完备李代数,并在R是特征不为2的整环的条件下,决定了L的所有自同构. Based on a non-solvable matrix Lie algebra L , the derivations and automorphisms of L were studied by the multiplication operation of block matrix. Using constructive proof methods, it is proved that the center of L is trivial and all its derivations are inner, in other words, L is shown to be a complete Lie algebra. Then, when R is an integer ring and its character is not 2, all the automorphisms of L are determined.
出处 《中国矿业大学学报》 EI CAS CSCD 北大核心 2006年第5期699-702,共4页 Journal of China University of Mining & Technology
基金 国家自然科学基金项目(10071078)
关键词 李代数 完备李代数 整环 导子 自同构 Lie algebras complete Lie algebras integer ring derivations automorphisms
  • 相关文献

参考文献8

  • 1CAO Y,Automorphisms of certain Lie algebras of upper triangular matrices over a commutative ring[J].Journal of Algebra,1997,189:506-513.
  • 2CAO Y,TANG Z.Automorphisms of the Lie algebras of strictly upper triangular matrices over a commutative ring[J].Linear Algebra Appl.,2003,360:105-122.
  • 3JφNDRUP S.Automorphisms and derivations of upper triangular matrix rings[J].Linear Algebra Appl.,1995,221:205-218.
  • 4JφNDRUP S.The group of automorphisms of certain subalgebras of matrix algebras[J].Journal of Algebra,1991,141:106-114.
  • 5JφNDRUP S.Automorphisms of upper triangular matrix rings[J].Arch.Math.,1987,49:497-502.
  • 6BENKART G M,OSBOM J M.Derivations and automorphisms of non-associative matrix algebras[J].Trans.Amer.Math.Soc.,1981,263:411-430.
  • 7JACOBSON N.Lie algebras[M].New York:Wiley-Interscience,1962.
  • 8HUMPGREYS J E.Introduction to Lie algebras and representation theory[M].New York:Springer-Verlag,1972.

同被引文献10

  • 1张波,王登银,张丽红.可换环上一类矩阵代数的导子和自同构[J].大学数学,2006,22(2):36-40. 被引量:1
  • 2黄惠玲,谭宜家,张国勇.交换半环上三角矩阵代数的自同构[J].数学研究,2007,40(2):202-206. 被引量:3
  • 3Leger GF,Luks E M.Generalized derivations of Lie algebras [J].J.Algebra,2000,28:165-203.
  • 4Benkovic D.Jordan derivation and antiderivations on triangular matrices [J].Liner Algebra Appl,2005,397:235- 244.
  • 5Beidar K I, Bresar M, Chebotar M A.Jordan isomorphisrns of triangular matrix algebras over a connected commutative ring [J].Liner Algebra Appl,2000,312:197- 201.
  • 6Leger G F,Luks E M.Generalized derivations of Lie al- gebras [J]. J.Algebras.2000,228:165 -203.
  • 7Ou Shikun, Wang Dengyin, Yao Ruiping.Derivations of the Lie algebra of strictly upper triangular matrices over a commutative ring[J].Linear Algebra App.,2007,424: 378-383.
  • 8Wang Dengyin, Yu Qiu,Ou Shikun.Derivations of certain Lie algebras of upper triangular matrices over commuta- tive rings[J].Joumal of Mathematical Research and Ex- position,2007,27 (3):474-478.
  • 9赵延霞,姚瑞平,王登银.交换环上上三角矩阵代数的扩代数及其若当导子[J].系统科学与数学,2008,28(12):1502-1508. 被引量:2
  • 10李娜娜,张荣娟.交换环上一类代数的拟导子[J].四川理工学院学报(自然科学版),2011,24(1):29-31. 被引量:1

引证文献2

二级引证文献1

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部