摘要
Sobolev空间的Cardinal样条逼近已有较多研究.在此研究了Sobolev空间的Cardinal-Hermite插值问题,构造了插值逼近算子,并利用插值算子对多项式的重构性质获得了逼近阶的估计.
The cardinal spline approximation of Sobolev spaces is studied in many papers by the authors. Here the approximation of Cardinal-Herrnite intepolation is considered and the approximation operator is constructed and the approximation order is obtained by using the property of reproducing polynomials of the operator.
出处
《云南大学学报(自然科学版)》
CAS
CSCD
北大核心
2006年第5期374-377,共4页
Journal of Yunnan University(Natural Sciences Edition)
基金
国家自然科学基金项目(10471010)
云南省教育厅基金资助项目(03Z533D)
北京师范大学"985项目"