期刊文献+

大气地转静力平衡的方差分析与L分布 被引量:2

Variance analysis of geostrophic-static equilibrium process and L probability distribution function
原文传递
导出
摘要 在对大气地转静力系统平衡问题的研究中,首次引出一种概率分布函数L分布.通过分析得出L分布函数具有明确的数字特征:①它的方差为1/9初始振幅的平方,均方差为1/3初始振幅,数学期望为0;②4阶中心矩为1/25初始振幅的4次方,峰度系数等于正0.24,偏度系数为0;③L分布的m阶矩存在,在正负1/e初始振幅区间内,它的概率是2/e(约74.04%);④在一个均方差区域内的概率是70.0%,在0值附近分布概率最大;⑤L分布比正态分布更集中在它数学期望值附近;峰度系数比正态分布高0.24;⑥最后应用到大气中推出方差无量纲数W. The new probability function, which is named as L distribution, has been pointed out in this paper by comparing with another famous distribution such as normal (Gaussian) distribution, exponential distribution, uniform distribution, student distribution and so on. The main numerical characteristics of L distribution have been deduced in the paper. For example, mean value and variance etc have already been inferred here. Most physical system of being deviating from its equilibrium state, when in damping process generally should be identified as falling into L distribution. The total average of variable of the distribution is equivalent to zero, at this time this is defined as absolute equilibrium state. But since the function has infinite result at the point θ = 0, which is supposed that the absolute equilibrium state essentially does not occur in this kind of system or in this kind of physical processes. In addition, continuous random variables concentrically (thickly) scatter in area near to zero θ= 0, this is just an obvious character (quality) of L distribution and peculiar of L function differentiating from other renowned distribution. In a word, the new distribution function f(0) = ln( θM/θ)^2/(4θM) has been discovered in detail by author of this article, its mean square deviation is (θM/3)^2, its mathematical expectation is zero and the coefficient of kurtosis of the distribution function is 0.24. the fourth moment v4 = ( θM)^4/25, finally third moment and coefficient of skew are both zero. Also M-th moment exist, this article has several extension which follows below: The probability is equal 2/e = 74.04% within coverage of 0〈 θ≤θM/el. The probability will be certainly nonexistent in the context of absolute Equilibrium θ= 0. The probability will be biggest within the realm(area) in the vicinity of Quasi- Equilibrium State ( θ→0 = mathematical expectation). It was new trial that Quasi- Equilibrium state is put into probability for discussion in spite of general analyzed traditionally in dynamical balance way. Along with its application into atmospheric field, the non - dimensional number W is surfaced.
出处 《云南大学学报(自然科学版)》 CAS CSCD 北大核心 2006年第5期418-424,共7页 Journal of Yunnan University(Natural Sciences Edition)
基金 中国气象局成都高原气象开放实验室基金课题(LPM2005001) 云南省自然科学基金资助项目(2003D0011M 2005D0006M) 国家自然科学基金资助项目(40165001)
关键词 L概率分布密度函数 方差 数学期望 峰度系数 无量纲数 the new distribution function the mean square deviation expected value the coefficient of kurtosis the non-dimensional number W
  • 相关文献

参考文献11

  • 1[比]伊.普里戈金(IIya Prigogine),[法]伊.斯唐热(Isabelle Stengers).从混沌到有序—人与自然的新对话[M].曾庆宏,沈小峰译.上海:上海译文出版社,1987.
  • 2茆诗松 周纪芗 等.概率论与数理统计[M].北京:中国统计出版社,2000..
  • 3曹振华,赵平,胡跃清.概率论与数理统计[M].南京:东南大学出版社.2003.
  • 4顾建中.普通物理学简明教程(力学部分)[M].北京:高等教育出版社.1977.
  • 5王万里,李才媛,王学雷,宋清翠.动力负熵场及其在短期天气预报中的应用[J].华中农业大学学报,1999,18(3):293-298. 被引量:1
  • 6刘式适 刘式达.大气动力学[M].北京:北京大学出版社,1991..
  • 7吴望一.流体力学[M].北京:北京大学出版社,1998..
  • 8王万里 丘爱武.浅析大气中的几种恒稳态[J].华中师范大学学报,1999,10:196-196.
  • 9CHARLES J STONE. A Course in Probability and Statistics[ M]. Wadsworth Company, 1996.
  • 10SUHIR, EPHRAMM. Applied probability for engineers and scientists[ M]. New York: McGraw-Hill,1997.

二级参考文献4

  • 1(芬)E.帕尔门 (美)C.W.牛顿.大气环流系统[M].北京:科学出版社,1978..
  • 2中国气象学会天气专业委员会.天气学的新进展-现代天气讲座文选[M].北京:气象出版社,1986..
  • 3中国气象学会天气专业委员会,现代天气学讲座文选,1986年
  • 4程纯枢(译),大气环流系统,1978年

共引文献62

同被引文献10

引证文献2

二级引证文献1

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部