期刊文献+

多传感器分布式融合Kalman预报器 被引量:1

Multisensor Distributed Fusion Kalman Predictor
下载PDF
导出
摘要 应用现代时间序列分析方法,基于ARMA新息模型,在线性最小方差最优信息融合准则下,对于输入噪声与观测噪声相关且观测噪声相关的多传感器系统,分别提出了按矩阵加权、按标量加权和按对角阵加权的3种分布式融合稳态Kalman预报器。其中提出了基于Lyapunov方程的局部预报估值误差方差阵和协方差阵计算公式。它们被用于计算最优加权,与单传感器情形相比,可提高估值器的精度。一个跟踪系统的仿真例子说明了其有效性,且说明了3种加权融合预报器的精度无显著差别。但标量加权融合预报器可显著减小计算负担,提供一种快速实时信息融合估计算法。 By modern time series analysis method, based on ARMA innovation model, under the linear minimum variance optimal information fusion criterion, the distributed fusion steady-state optimal Kalman predictors weighted by matrices, scalars, and diagonal matrices are presented for multisensor systems with correlated input and observation noises, and with correlated observation noises, respectively. Based on the Lyapunov equations, the formulas of computing local predicting error variances and covariances are given, which are applied to compute optimal weights. Compared to the single sensor case, the accuracy of the fused predictor is improved. A simulation example for tracking systems shows its effectiveness, and shows that the accuracy distinction of the predictors weighted by three ways is not obvious, but the predictor weighted by scalars can obviously reduce the computational burden, and provides a fast real time information fusion estimation algorithm.
作者 邓自立 毛琳
出处 《电子与信息学报》 EI CSCD 北大核心 2006年第9期1542-1545,共4页 Journal of Electronics & Information Technology
基金 国家自然科学基金项目(60374026) 黑龙江大学自动控制重点实验室资助课题
关键词 多传感器信息融合 线性最小方差融合准则 加权融合 LYAPUNOV方程 分布式融合Kalman预报器 Multisensor information fusion, Linear minimum variance fusion criterion, Weighted fusion, Lyapunov equation, Distributed fusion Kalman predictor
  • 相关文献

参考文献5

二级参考文献2

  • 1[1]Carlson N A. Federated square root filter for decentralized parallel processes. IEEE Trans Aerospace and Electronic Systems, 1990; 26(3) :517-525
  • 2[2]Kim K H. Development of track to track fusion algorithm. Proceeding of the American Control Conference, Maryland, June 1994: 1037-1041

共引文献32

同被引文献9

引证文献1

二级引证文献8

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部