期刊文献+

在S_1^(n+1)空间中具有常数量曲率的类空超曲面的高斯映射(英文)

On the Gauss Map of Spacelike Hypersurfaces with Constant Scalar Curvature in De Sitter Space
下载PDF
导出
摘要 在这篇文章中,我们研究在de Sitter空间中具有非负常值的第r个平均曲率的紧致的类空超曲面.我们证明了在合适的条件下紧致的类空超曲面是全脐的. In this paper,we consider compact spacelike hypersurfaces in de Sitter space with constant nonnegative r-mean curvature, We prove that the compact spacelike hypersurfaces are totally umbilical under appopariate hypothesis.
出处 《数学研究》 CSCD 2006年第3期223-228,共6页 Journal of Mathematical Study
基金 Research is supported by the Natural Science Foundation of China(No.10371047).
关键词 高期映射 de SITTER空间 类空超曲面 第r个平均曲率 Gauss Map de Sitter space spacelike hypersurface r-mean curvature
  • 相关文献

参考文献14

  • 1Autagawa K. On spacelike hypersurfaces with constan: mean curvature in the de sitter space. Math. Z.1987, 96:13-19.
  • 2Aledo J A, Alisa L J, Romero A. In tegral formulas for compact spacelike hypersurfaces in de sitter space: Applications to the case of constant higher order mean cuvature. J. Geom. Phys. 1999,31:195-208.
  • 3Aledo J A, Alias L J. Curvature properties of compact spacelike hypersurfaces in de sitter space. Diff.Geo. Appl. 2001,14:137-149.
  • 4Alencar H, Rosenbeg H, Santos W. On the gauss map of hypersurfaces with constant scalar curvature in spheres. Proc. Ams. 2004,132:3731-3739.
  • 5Barbosa J L, Colares A. Stability of hypersurfaces with constant r-mean curvature, Annals of GlobalAnalysis and Geometry. 1996, 15 : 277- 297.
  • 6Cheng Q M, Ishikawa S. Spacelike hypersurfaces with constant scalar cuvature. Manuscripta Math.1998,95:499-505.
  • 7Cheng S Y, Yau S T. Hypersurfaces with constant scalar curvature. Math. Ann. 1977,225 : 195-204.
  • 8Goddard A. Some remarks on the existence of spacelike hypersurfaces of constant mean curvature. Math.Proc. Cambridge Phil. Soc. 1977,82:489-495.
  • 9Hardy G, Litlewood J, Polya G. Inequalities. 2^nd Ed, Cambridge Yniv. Press. 1989.
  • 10Li H. Global rigidety theorems of hypersurfaces. Ark Mat. 1997,35 : 327- 351.

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部