期刊文献+

隐式重新启动的Lanczos算法在模型降阶中的应用 被引量:2

Implicitly Restarted Lanczos Algorithm for Model Reduction
下载PDF
导出
摘要 主要研究了一种隐式重新启动的L anczos算法在模型降阶中的应用.分析了由这个算法得到的降价后的模型的一些性质,对于一个n阶稳定的线性时不变系统,模型降阶的思想是寻找一个m阶转换函数来近似原系统的n阶转换函数H(s),其中n m.传统的kry lov子空间方法仅仅产生一个不稳定的实现,并且在低频处的误差较大,本文所考虑的隐式重新启动的L anczos方法,能较好的解决上述两个问题. This Paper considers an implicitly Lanczos Algorithm that approximates a stable, linear transfer function f(s) of order n by one of order m, where n〉〉m, It is well known that obilqtie projections onto a Krylov subspace may generate unstable partial realizations. A second difficulty arises from the fact that Krylov subspace methods often generate partial realizations that contain nonessential modes. The method considered in this paper can remedy these situation.
出处 《数学研究》 CSCD 2006年第3期252-260,共9页 Journal of Mathematical Study
基金 国家自然科学重点基金资助(10531080)
关键词 KRYLOV子空间 LANCZOS算法 大型动力系统 隐式重新启动 Krylov subspace Lanczos Large-scale systems implicit restarts
  • 相关文献

参考文献9

  • 1Glover K. All optimal Hankel norm approximations of linear multivariable systems and their L^∞ errorbounds. Inter. J. Control. 1983,39:97-105.
  • 2Moore B C. Principal component analysis in linear systems:controllability,obersvability and model reduction, IEEE Trans. Automat. Control, AC 1981,26 : 17- 31.
  • 3Al-Husari M M M, Hendel B, Jaimoukha I M, Kasenally E M, Limebeer D J N, Portone A. Vertical stabilisation of Tokamak plasmas,30th Conference on Decision and Control, England, 1991.
  • 4Bai Zhaojun. Krylov subspace techniques for redeeed-order modeling of large-scale dynamical sys-tems.Applied Numerical Mathematics, 2002,43 : 9- 44.
  • 5Roland W. Freund, Reduced-Order Modeling Techniques Based on Krylov Subspaces and Their Use in Circuit Simulation. Numerical Analysis Manuscript No. 98-3-02, Bell Laboratories, Murray Hill, New Jersey, Feburay 1998.
  • 6Bai Zhaojun, Roland W. Freund. A Partial Pade-via-Lanczos method for reduced-order modeling. Linear Algebra and its Applications, 2001, 332 - 334:139- 164.
  • 7Imad M. Jaimoukha, Ebrahim M. Kasenally. Implicitly restarted krylov subspace methods for stable partial realizations. SIAM J. Matrix and Appl. 1973, 18(3) : 633- 653.
  • 8Sorensen D C. Implicit application of polynomial filters in a k-step arnoldi method, SIAM J. Matix Appl, 1992,13:357-385.
  • 9Jaimoukha I M, Kasenally E M. Oblique projection methods for large methods for large scale model reduction. SIAM J. Matrix Anal. Appl, 1995,16:602-627.

同被引文献13

  • 1李晓梅,吴建平.Krylov子空间方法及其并行计算[J].计算机科学,2005,32(1):19-20. 被引量:20
  • 2[1]K.Henrik,A.Olsson.Model Order Recduction with Rational Krylov Methods[M].Stockholm,Sweden:Doctoral Thesis in Numerical Analysis,2005.
  • 3[2]E.J.Grimme.Krylov Projection Methods for Model Reduction[M].Ph.D.Thesis,ECE Dept.,U.of Illinois,Urbana-Champaign,1997.
  • 4[3]S.Gugercin,A.C.Antoula.An H2 error expression for the Lanczos procedure[J].Proceedings of the 42nd IEEE Conference on Decision and Control,December,2003.
  • 5Kwee I W. Towards a Bayesian framework for optical tomagraphy [ D ]. London:Department of Medical Physics and Bioengineering of University College London, 1999.
  • 6Tao W, Cheng L, Jun L. Self-adaptive mesh of time domain microwave imaging of PEC Object [ C ]. 2008 International Conference On Microwave and Millimeter Wave Technology Proceeding,2008,4 : 1934-1937.
  • 7Itoh S, Shibahara M, Serizawa H, et al. Development of hierarchical multi-grid method and its application to the iterative sub- structure method[ C ]. Proceeding of the International Offshore and Polar Engineering Conference, 2009: 700-705.
  • 8Raberg T, Schanz M. An alternative collocation boundary element method for static and dynamic problems [ J ]. Computational Mechanics, 2009, 44(2) : 247-261.
  • 9L Vu-Quoc, Y Zhai, K D T Ngo. Efficient simulation of coupled circuit-field problems:Generalized Falk Method [ J ]. Computer-Ai- ded Design of Integrated Circuits and System,2004,23:1209-1219.
  • 10Bai Zhaojun, Roland W. Krylov subspace techniques for reduced-order modeling of large-scale dynamical systems [ J ]. Applied Numerical Mathematics ,2002,43:944.

引证文献2

二级引证文献1

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部