期刊文献+

带有误差变量混合分布模型的估计

Estimates of Mixture Distribution Model with Measurement Errors
下载PDF
导出
摘要 在许多实际问题中,存在一些不可直接观测的变量,对此统计学家们提出了反卷积和混合分布模型来解决这一变量的分布的估计问题.本文对这一问题采用bootstrap模拟方法得出分布函数的估计,并进一步建立该分布函数的非参bootstrap百分位区间.在数值试验中将我们的处理方式与传统的EM算法得到的分布估计和正态逼近区间作比较,数值结果表明用bootstrap模拟方法得到的准确度更好,数值效果更理想. There are many unobservable variables in some practical fields, for this, deconvolution and mixture distribution has been developed and used widely. In this paper, we consider the estimation of a distribution function when observations from this distribution are contaminated by measurement error. The approach for using mixture distributions and bootstrap simulations is used to solve this prob'.em, For two parts,distribution function and confidence interval, we show that our result is much better than Clifford,B. C.
出处 《数学研究》 CSCD 2006年第3期299-306,共8页 Journal of Mathematical Study
关键词 不可观测变量 反卷积 混合分布模型 EM算法 bootstrap模拟 Unobservable variable Deconvolution Mixture distribution Expectation-maximization algorithm Bootstrap sampling
  • 相关文献

参考文献12

  • 1Medgyessy P. Decomposition of Superpositions of Density Functions and Discrete Distributions, 1977.
  • 2Stefanski L, Carroll R. Deconvoluting of Kernel Density Estimators. Statistics, 1990,21: 169-184.
  • 3Masry E, Rice J A. Gaussian Deconvolution via Differentiation. The Canadian Journal of Statistics, 1992, 20:9-21.
  • 4Carroll R, Hall P. optimal Rates of Convergence for Deconvoluting a Density. Journal of the American Statistical Association, 1988,83:1184- 1186.
  • 5Fan J. On the Optimal Rates of Convergence for Nonparametric Deconvlution Problems. The Annals of Statistics, 1991,19:1257-1272.
  • 6Maritz J S, Lwin T. Empirical Bayes Methods. New York. Chapman and Hall, 1989.
  • 7Thomas A. Louis, Finding the observed information matrix when using the EM algorithm. J. R. Statist,Soc. B, 1982,44:226-233.
  • 8Clifford B. Cordy, David R. Thomas, Deconvolution of a distribution function. Journal of the American Statistical Association, 1997,Vol. 92.
  • 9Xu L, Jordan M I. On convergence properties of the EM algorithm for Gaussian mixture. Neural computation, 1994.
  • 10Ma J W, Fu S Q. On the correct convergence of the EM algorithm for Gaussian mixture. Pattern Recognition, 2005,36:2602-2611.

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部