期刊文献+

废水同步生物处理与生物燃料电池发电研究 被引量:52

Biological Wastewater Treatment and Simultaneous Generating Electricity from Organic Wastewater by Microbial Fuel Cell
下载PDF
导出
摘要 利用厌氧活性污泥作为接种体成功地启动了空气阴极生物燃料电池(ACMFC),110h的接种产生了0.24V的电压;以乙酸钠和葡萄糖作底物分别产生了0.38V和0.41V电压(外电阻1 000Ω),最大功率密度分别达到146.56 mW/m2和192.04mW/m2,表明有机废水可以用来发电;同时,乙酸钠和葡萄糖的去除率分别为99%和87%,表明燃料电池可以处理废水.二者的电子回收率均在10%左右,主要是由于阴极对氧气分子的透过作用引起的微生物好氧呼吸导致电子损失.生物燃料电池可以将有机废水中的化学能直接转化为最清洁的电能,同时又能处理污水,具有显著的环境效益和经济效益. An air-cathode microbial fuel cell (ACMFC) was successfully started up using anaerobic activated sludge as inoculums, generating a voltage of 0.24V after inoculations for 110 h, When using acetate and glucose as substrate, voltage of 0.38V and 0.4IV (based on external resistance of 1000Ω) is obtained ; meanwhile, the maximum power density reaches 146.56 mW/m^2 and 192.04 mW/m^2 respectively, suggesting that organic wastewater can be used to produce electricity. Removal efficiency of 99% (acetate) and 87 % (glucose) is achieved simultaneously, demonstrating that ACMFC can treat organic wastewater. Electron recovery efficiency as low as 10 % for both acetate and glucose is observed mainly due to aerobic respiration of microorganisms caused by diffusion of oxygen molecular from the cathode, leading to electron loss. MFCs are capable of converting chemical energy presented in organic wastewater into electricity energy with accomplishments of wastewater treatments simultaneously, which possibly captures considerable benefits in terms of environments and economics.
出处 《环境科学》 EI CAS CSCD 北大核心 2006年第9期1786-1790,共5页 Environmental Science
关键词 空气阴极生物燃料电池(ACMFC) 厌氧活性污泥 乙酸钠 葡萄糖 功率密度 电子回收 air-cathode microbial fuel cell (ACMFC) anaerobic activated sludge acetate glucose power density electron recovery
  • 相关文献

参考文献13

  • 1Logan B E.Feature Article:Biologically extracting energy from wastewater:biohydrogen production and microbial fuel cells[J].Environ.Sci.Technol.,2004,38:160A-167A.
  • 2Park D H,Zeikus JG.Electricity generation in microbial fuel cell using neutral red as electronophore[J].Appl.Environ.Microbiol.,2000,66:1292- 1297.
  • 3Siebel D,Bennetto H P,Delaney G M,et al.Electron-transfer coupling in microbial fuel cells.I.Comparison of redoxmediator reduction rates and respiratory rates of bacteria[J].J.Chem.Technol.Biotechnol.,1984,34B:3- 12.
  • 4Bond D R,Holmes D E,Tender L M,et al.Electrode reducing micro-organisms that harvest energy from marine sediments[J].Science,2002,295:483 - 485.
  • 5Hernandez M E,Newman D K.Extracellular electron transfer[J].Cell.Mol.Life Sci.,2001,58:1562- 157.
  • 6Angenent L T.Production of bioenergy and biochemicals from industrial and agricultural wastewater[J].Trends Biotechnol.,2004,22:477- 485.
  • 7Rabaey K.Microbial phenazine production enhances electron transfer in biofuelcells[J].Environ.Sci.Technol.,2005,39:3401 - 3408.
  • 8Hernandez M E.Phenazines and other redox-active antibiotics promote microbial mineral reduction[J].Appl.Environ.Microbiol.,2004,70:921 - 928.
  • 9Liu H,Logan B E.Electricity generation using an air-cathode single chamber microbial fuel cell in the presence and absence of a proton exchange membrane[J].Environ.Sci.Technol.,2004,38:4040 - 4046.
  • 10American Public Health Association,American Water Works Association,Water Pollution Control Federation.In Standard Methods for the Examination of Water and Wastewater[M].(18th ed).Washington D C:American Public Health Association,1992.

同被引文献776

引证文献52

二级引证文献284

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部