期刊文献+

基于PSO的SVR参数优化选择方法研究 被引量:66

Study on Optimization of SVR Parameters Selection Based on PSO
下载PDF
导出
摘要 支持向量回归机(SVR)模型的拟合精度和泛化能力取决于其相关参数的选取,因此提出了基于粒子群(PSO)算法的SVR参数优化选择方法;并以不同噪声影响下的sinc函数和实际发酵过程产物浓度的SVR模型为对象,将提出的PSO优化参数方法与现有的交叉验证法、留一法进行比较。仿真结果表明:该PSO优化SVR参数方法可行、有效,由此得到的SVR模型具有更好的学习精度和推广能力。 The regression accuracy and generalization performance of the support vector regression (SVR) models depend on a proper setting of its parameters. An optimal selection approach of SVR parameters was put forward based on particle swarm optimization (PSO) algorithm. Furthermore, a comparison was made between the performance of PSO parameter selection and cross validation (CV) and leave-one-out (LOO) method on various data sets, such as a sin c function with additive noise and a SVR model of the product concentration in fermentation process. Simulation results show that the optimal selection approach based on PSO is available and the PSO-SVR model has superior learning accuracy and generalization performance.
出处 《系统仿真学报》 EI CAS CSCD 北大核心 2006年第9期2442-2445,共4页 Journal of System Simulation
基金 江苏省自然科学基金(BK2005012)
关键词 支持向量回归 参数优化选择 粒子群算法 状态预估 support vector regression parameter selection particle swarm optimization algorithm state estimation
  • 相关文献

参考文献9

二级参考文献22

  • 1朱国强,刘士荣,俞金寿,.基于支持向量机的数据建模在软测量建模中的应用[J].华东理工大学学报(社会科学版),2002,17(S1):6-10. 被引量:8
  • 2Eberhart R C, Shi Y H. Evoling Artificial Neural Networks [A].Proceeding of Int'1 Conference on Evolutionary Computation[C]. Anchorage, Alaska, USA, 1998.
  • 3Kennedy J, berthart R. Particle swarm optimization[A]. Pro IEEE Int. Conf. on Neural Net works [C].Perth, 1995: 1942-1948.
  • 4Eberhart R C, Shi Y. Comparing inertia weights and constriction factors in particle swarm optimization[A]. Proc. 2000 Congress Evolutionary Computation [C].iscataway, NJ: IEEE Press,2000: 84-88.
  • 5ShiYuhui, Eberhart R. Fuzzy adaptive paticle swarm optimazition[A]. Proc IEEE Int Conf on Evolutionary Computation [C]. Seoul, 2001, 101-106.
  • 6孙增圻.智能控制理论与技术[M].北京:清华大学出版社,2001..
  • 7Morris A J,Montague G A,Tham M T. Soft-sensors in industrial process control [ A ]. Applied Developments in Process Control[C]. London, UK:1989. 1 -3.
  • 8Vapnik V N. The Nature of Statistical Learning Theory [ M]. New York: Springer-Verlag, 1995.
  • 9Willis M J, Di M C, Montague G A,et al. Artificial neural networks in process engineering [ J ]. Control Theory and Applications,1991,138(3) :256 -266.
  • 10Gunn S R. Support Vector Machines for Classification and Regression [ R]. UK: University of Southampton, 1997.

共引文献82

同被引文献626

引证文献66

二级引证文献308

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部