摘要
支持向量回归机(SVR)模型的拟合精度和泛化能力取决于其相关参数的选取,因此提出了基于粒子群(PSO)算法的SVR参数优化选择方法;并以不同噪声影响下的sinc函数和实际发酵过程产物浓度的SVR模型为对象,将提出的PSO优化参数方法与现有的交叉验证法、留一法进行比较。仿真结果表明:该PSO优化SVR参数方法可行、有效,由此得到的SVR模型具有更好的学习精度和推广能力。
The regression accuracy and generalization performance of the support vector regression (SVR) models depend on a proper setting of its parameters. An optimal selection approach of SVR parameters was put forward based on particle swarm optimization (PSO) algorithm. Furthermore, a comparison was made between the performance of PSO parameter selection and cross validation (CV) and leave-one-out (LOO) method on various data sets, such as a sin c function with additive noise and a SVR model of the product concentration in fermentation process. Simulation results show that the optimal selection approach based on PSO is available and the PSO-SVR model has superior learning accuracy and generalization performance.
出处
《系统仿真学报》
EI
CAS
CSCD
北大核心
2006年第9期2442-2445,共4页
Journal of System Simulation
基金
江苏省自然科学基金(BK2005012)
关键词
支持向量回归
参数优化选择
粒子群算法
状态预估
support vector regression
parameter selection
particle swarm optimization algorithm
state estimation