期刊文献+

基于RBF网络非线性系统逆控制的一种设计方案 被引量:13

Design of Inverse Control of Nonlinear System Based on RBF Neural Network
下载PDF
导出
摘要 基于逆动力学控制的思想,提出一种RBF神经网络逆控制与PID控制相结合的在线自学习控制方案。辨识器采用RBF神经网络结构和最近邻聚类算法,实现了对系统逆动力学模型的动态辨识。并将辨识模型作为控制器模型,与被控对象串联,构成一个动态伪线性对象,从而使非线性对象的控制问题转换为线性对象的控制问题。仿真实验证明该控制策略不仅能使系统具有良好的动态跟踪性能和抗干扰能力,而且具有较强的鲁棒性。 Based on the though t of inverse system control, a method of on-line self-learning control strategy was proposed, which combines inverse control based on RBF neural network with PID control. The system identifier based on RBF neural network which applies nearest neighbor clustering algorithm realizes the identification of the inverse dynamic system model. The model of controller which is the copy of identifier and the plant controlled are in series, which forms a dynamic pseudo linear system. Consequently, the control problem of non-linear plant is converted into that of linear plant. With the help of simulations, the control strategy based on RBFNN inverse controller can not only improve dynamic track performance and resistance to disturbance of system, but also possess excellent robustness.
出处 《系统仿真学报》 CAS CSCD 北大核心 2006年第9期2688-2690,共3页 Journal of System Simulation
基金 安徽省"十五"攻关项目资助(01012053) 安徽省教育厅自然科学基金资助项目(2004KJ059)
关键词 RBF神经网络 直接逆控制 在线自学习 最近邻聚类算法 RBF neural network direct inverse control on-line self-learning nearest neighbor clustering algorithm
  • 相关文献

参考文献4

  • 1沈清 胡德文 时春.神经网络应用技术[M].北京:国防科技大学出版社,1993..
  • 2Sift Wddrasooriya, Mohanmed A. E1-Sharkawi.Laboratory Implementation of a neural network trajectory Controller for a DCMotor [J]. IEEE Trans on Energy Conversion(S0885-8969), 1993,8(1): 107-113.
  • 3Plett, Gregory L. Adaptive inverse control of linear and nonlinear systems using dynamic neural networks[J]. IEEE Transactions on Neural Networks(S1045-9227), 2003, 14(2): 360-376.
  • 4储岳中,张绍德,张世峰.基于正则化RBF神经网络的钢包精炼炉电极系统智能建模[J].自动化与仪表,2004,19(5):5-7. 被引量:17

二级参考文献4

共引文献29

同被引文献62

引证文献13

二级引证文献41

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部