期刊文献+

一种基于改进罚函数的盲分离算法 被引量:1

下载PDF
导出
摘要 文章通过对Hyvarinen-Oja算法的理论分析与仿真比较,提出了一种改进的罚函数实时线性混叠信号盲分离算法。该算法不仅从理论上导出了罚函数的选取方法,而且也大大加快了算法的收敛速度,避免了目前纯罚函数方法可能带来的病态问题。最后进行仿真,结果表明该算法不仅具有很好的分离效果,而且分离时间较Hyvarinen-Oja算法缩短了30%。
出处 《移动通信》 2006年第9期81-84,共4页 Mobile Communications
基金 广东省自然科学团队研究项目(04205783) 国家自然科学基金项目(60505005) 广东省自然科学基金项目(05103553)和(05006508) 科技部重大基础前期研究专项(2005CCA04100)资助。
  • 相关文献

参考文献6

  • 1A Hyvarinen,E Oja.Simple Learning models for Independent Independent Component analysis[J].Journal of Neural Systems,1996,7(6):671 -687.
  • 2A Hyvarinen,E Oja.Independent component analysis:algorithms and applications[J].Neural networks,2000 (13):411-430.
  • 3A Hyvarinen.The Fixed-Point Algorithm and Maximum likelihood estimation for independent component analysis[J].Neural processing,1999 (10):1-5.
  • 4A Hyvarinen,E Oja.Independent Component Analysis by General Nonlinear Hebbian-like Learning Rules[J].Signal Processing,1998(64):301-313.
  • 5钱颂迪 顾基发 等.运筹学[M].清华大学出版社,1990..
  • 6袁亚湘 孙文渝.最优化理论与方法[M].北京:科学出版社,1999..

共引文献238

同被引文献13

  • 1Wixson L.Detecting salient motion by accumulating di- rectionally consistent flow[J].lEEE Transactions on Pat- tern Analysis and Machine Intelligence, 2000, 22 (8) : 774-780.
  • 2Kim C,Hwang J N.Fast and automatic video object seg- mentation and tracking for content-based applications[J]. |EEE Transactions on Circuits and Systems for Video Technology, 2002, 12 (2) : 122-129.
  • 3Haritaoglu I,Harwood D,Davis L S.W4:real-time surveil- lance of people and their activities[J].IEEE Transactions on Pattern Analysis and Machine Intelligence, 2000, 22 (8) :809-830.
  • 4Jacques J C S,Jung C R,Musse S R.Background subtrac- tion and shadow detection in grayscale video sequences[C]// Proceedings of 18th Brazilian Symposium on Computer Graphics and Image Processing,2005:189-196.
  • 5Karaboga D.An idea based on honey bee swarm for nu- merical optimization, Technical Report-TR06[R].Computer Engineering Deparlment, Engineering Faculty, Erciyes Uni- versity, 2005.
  • 6Karaboga D, Basturk B.A powerful and efficient algo- rithm for numerical function optimization: Artificial Bee Colony(ABC) algorithm[J].Journal of Global Optimiza- tion, 2007,39 (3) : 459-471.
  • 7Karaboga D, Basturk B.On the performance of Artifici Bee Colony(ABC) algorithm[J].Applied Soft Computin~ /2008,8(1):687-697.
  • 8Karaboga D, Akay B.A comparative study of artificial bee colony algorithm[J].Applied Mathematics and Com- putation, 2009,214( 1 ) : 108-132.
  • 9Karaboga N.A new design me~aod based on artificial bee colony algorithm for digital fiR filters[J].Journal of the Franklin Institute, 2009,346 (4) : 328-348.
  • 10Karaboga D, Ozturk C.Neural networks training by arti- ficial bee colony algorithm on pattem classification[J]. Neural Network World,2009, 19(3) :279-292.

引证文献1

二级引证文献1

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部