期刊文献+

蚁群算法优化策略及其仿真研究 被引量:11

Strategy of Optimization in Ant Colony Algorithm and Simulation Research
下载PDF
导出
摘要 蚁群算法广泛应用于求解组合优化问题,但基本蚁群算法与其他模拟进化算法存在进化速度慢并易于陷入局部最小等缺陷。论文应用蚁群算法求解最短路径问题,从信息量的更新方式、局部搜索策略及参数选择等方面提出相应的改进策略。通过TSP问题的仿真表明,改进算法能够加快收敛速度,节省搜索时间,而且能够克服停滞行为的过早出现。 Ant colony algorithm has been widely applied to solving complicated combinatorial optimization problems. Much deficiency,such as low searching speed and easy falling to the local best,still exists in the basic ant colony algorithm available.In this paper,the algorithm is used for the shortest path problem.It is improved in three parts of information modification,local search strategy and parameters selection,The simulation for TSP problem shows that the improved algorithm can find better path at higher convergence speed,save the search time and overcome the precocity and stagnation.
出处 《计算机工程与应用》 CSCD 北大核心 2006年第25期48-49,97,共3页 Computer Engineering and Applications
关键词 蚁群算法 组合优化 旅行商问题 ant colony algorithm,combinatorial optimization,TSP
  • 相关文献

参考文献5

  • 1Belgium.Ant Colony System:A Cooperative Learning Approach to the Traveling Salesman Problem[R].Technical Report IRIDIA-1996-5
  • 2Marco Dorigo,V Maniezzo,A Colorni.The Ant Systems:Optimization by a colony of cooperating agents[J].IEEE Transactions on Systems,Man,and Cybernetics,1996 ;26:29~41
  • 3T Stutzle,H H Hoos.MAX-MIN Ant System[J].Future Generation Computer Systems,2000; 16(8):889~914
  • 4陈崚,沈洁,秦玲,陈宏建.基于分布均匀度的自适应蚁群算法[J].软件学报,2003,14(8):1379-1387. 被引量:111
  • 5高尚,韩斌,吴小俊,杨静宇.求解旅行商问题的混合粒子群优化算法[J].控制与决策,2004,19(11):1286-1289. 被引量:73

二级参考文献7

共引文献181

同被引文献83

引证文献11

二级引证文献64

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部