期刊文献+

非线性管理光纤光栅中的调制不稳定性研究 被引量:2

Modulation Instability in Fiber Grating with Nonlinearity Management
原文传递
导出
摘要 基于非线性耦合模方程,研究了非线性管理光纤光栅中的调制不稳定性,得到了调制不稳定性的色散关系。与常规的非线性光纤光栅相比,在非线性管理光纤光栅中,克尔非线性的变化改变了调制不稳定性增益谱的谱宽和幅度,并导致新的不稳定性区域的出现:在反常色散区,原来关于零波数对称的两个旁瓣随着克尔非线性变化的增加其增益幅度递减至零,在经历了一段无增益区域之后,又逐渐形成了在零波数附近区域的一个新的单峰;而在正常色散区,除了原来的两个增益区域之外,零波数附近出现了新的增益区,增益的幅度随克尔非线性变化的增加而递增。可见,非线性管理光纤光栅给调制不稳定性的产生提供了更多的空间。 Modulation instability in fiber grating with nonlinearity management is studied based on the nonlinear coupled-mode equations. The dispersion relation for modulation instability is obtained. Compared with normal nonlinear fiber grating, in the fiber grating with nonlinearity management the variance of Kerr nonlinearity alters the spectral width and amplitude of the gain spectrum for modulation instability, and leads to the occurrence of new ranges of instability. In the anomalous dispersion regime, the gain amplitude of two distinct sidelobes originally on either side of the zero wave number region diminishes to zero as the variance of Kerr nonlinearity increases, and a new single peak around zero wave number appears gradually after a region of zero gain; while in the normal dispersion regime, besides the original two gain regions, a new gain region occurs around the zero wave number region, and its gain amplitude increases as the nonlinearity management coefficient augments. As a result, the fiber gratine with nonlinear manaeement provides a larger space for the generation of modulation nonlinearitv.
出处 《光学学报》 EI CAS CSCD 北大核心 2006年第9期1387-1391,共5页 Acta Optica Sinica
基金 国家自然科学基金(10576012) 教育部高等学校博士点基金(20040532005)资助课题
关键词 非线性光学 调制不稳定性 耦合模方程 非线性管理光纤光栅 nonlinear optics modulation instability coupled-mode equations fiber gratings with nonlinearitymanagement
  • 相关文献

参考文献19

二级参考文献21

  • 1徐文成,郭旗,廖常俊,刘颂豪.光孤子在色散缓变光纤中传输时的等价增益[J].物理学报,1994,43(5):734-741. 被引量:11
  • 2A. Hasegawa. Generation of a train of soliton of pulses by induced modulafional instability in optical fibers [J]. Opt.Lett. , 1984, 9(7):288-290.
  • 3E. M. Dianov, P. V. Mamyshey, A. M. Prokhorov et al..Generation of a train of fundamental solitons at a high repetition rate in optical fibers [J]. Opt. Lett., 1989, 14(18):1008-1010.
  • 4Xu Wangcheng. Wen Shuangchun, Liu Songhao et al.. Modulation instability of optical pulses in long optical fibers with minimum group-velocity dispersion [J]. Chin. Phys.Lett., 1997, 14(6):470-473.
  • 5K, Tajima, Compensation of soliton broadening in nonlinear optical fibers with loss [J]. Opt. Lett. , 1987,12(1):54-56.
  • 6T. A. Davydova, Y. A. Zaliznyak. Schrodinger ordinary solitons and chirped solitons: fourth-order dispersive effects and cubic-quintic nonlinearity [J]. Physica D, 2001, 156:260-282.
  • 7D. Artigas, L. Torner, J. P. Torres et al.. Asymmetrical splitting of higher-order optical solitons induced by quintic nonlinearity [J]. Opt. Commun. , 1997, 143:322-328.
  • 8D. Pushkarov, S. Tanev. Bright and dark solitary wave propagation and bistability in the anomalous dispersion region of optical waveguides with third- and fifth-order nonlinearities [J].Opt. Commun., 1996, 124:354-364.
  • 9A Hasegawa. Generation of a train of soliton of pulses by induced modulational instability in optical fibers[J]. Opt. Lett., 1984, 9(7) : 288-290.
  • 10E M Dianov, P V Mamyshev, A M Prokhorov et al..Generation of a train of fundamental solitons at a high repetition rate in optical fibers[J]. Opt. Lett., 1989, 14(18): 1008-1010.

共引文献44

同被引文献12

引证文献2

二级引证文献9

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部