摘要
Chemical interferences (ionization and oxide/hydroxide formation) on the atomic absorbance signal of lithium in FAAS analysis of brine samples are elaborated in this article. It is suggested that inadequate or overaddition of deionization buffers can lead to loss of sensitivities under particular operating conditions. In the analysis of brine samples,signal enhancing and oxide/hydroxide formation inducing signal reduction resulting from overaddition of deionization buffers can be seen with varying amounts of chemical buffers. Based on experimental results,the authors have arrived at the optimized operating conditions for the detection of lithium,under which both ionization and stable compound formation can be suppressed. This is a simplified and quick method with adequate accuracy and precision for the determination of lithium in routine brine samples from chemical plants or R&D laboratories,which contain comparable amounts of lithium with some other components.
Chemical interferences (ionization and oxide/hydroxide tormarlon/ on me atomic absorbance signal of lithium in FAAS analysis of brine samples are elaborated in this article. It is suggested that inadequate or overaddition of deionization buffers can lead to loss of sensitivities under particular operating conditions. In the analysis of brine samples, signal enhancing and oxide/hydroxide formation inducing signal reduction resulting from overaddition of deionization buffers can be seen with varying amounts of chemical buffers. Based on experimental results, the authors have arrived at the optimized operating conditions for the detection of lithium, under which both ionization and stable compound formation can be suppressed.
出处
《北京科技大学学报》
EI
CAS
CSCD
北大核心
2006年第8期732-732,共1页
Journal of University of Science and Technology Beijing
关键词
分析化学
简便方法
锂
火焰原子吸收光谱法
analytical chemistry
simplified method
FAAS
lithium
brine
deionization
oxide/hydroxide formation