期刊文献+

超过程的拼接及其对应的非线性偏微分方程

″Piecing″ of Superprocesses and Corresponding Nonlinear Partial Differential Equations
下载PDF
导出
摘要 通常的超过程仅具有时齐的分支机制.利用超过程的“拼接”方法,构造了一类具有非时齐分支机制的超过程,并且证明了它与一类非线性偏微分方程相对应. Superprocesses always have homogeneous branching mechanism. A class of superprocesses with non-homogeneous mechanism are constructed by "piecing method" of superprocesses, and the nonlinear partial differential equations corresponding these superprocesses are given.
作者 赵巧玲
机构地区 郑州大学数学系
出处 《郑州大学学报(理学版)》 CAS 2006年第3期24-27,共4页 Journal of Zhengzhou University:Natural Science Edition
基金 河南省自然科学基金资助项目 编号2004601018
关键词 超过程 非时齐分支机制 Laplace泛函 拼接法 superprocess non-homogeneous branching mechanism Laplace functional piecing method
  • 相关文献

参考文献9

  • 1DAWSON D A.Infinitely divisible random measure and superprocesses[C]//Proceedings of 1990 Workshop on Stoehas tic Analysis and Related Topics.Silivri,Turkey,1992.
  • 2DAWSON D A.Measure valued Markov process[M]// HENNEQUIN P L ed.Lect Notes in Math.Springer-Verlag,Ber lin,1993,1541:1-260.
  • 3DYNKIN E B.An introduction to branching measure valued processes[M].Amer Math Soc,Providence,RI,1994.
  • 4LE GALL J F.A class of path-valued Markov processes and its applications to superprocesses[J].Probab Th Rel Fields,1993,95:25-46.
  • 5PERKINS E A.Measure-valued branching diffusions and interactions[C] // Proceedings of the International Congress of Mathematicians,1995:1036-1046.
  • 6MA Zhi-ming,XIANG Kai nan.Superprocesses of stochastic flows[J].Ann Probab,2001,29:317 343.
  • 7MYTNIK L.Superprocesses in random environments[J].Ann Probab,1996,24:1953-1978.
  • 8DARLING R W R.Rate of growth of the coalescent set in a coalescing stochastic flow[J].Stochastics,1988,23:465-580.
  • 9ETHIER S N,KURTZ T G.Markov processes:characterization and convergence[M].Wiley,New York,1986:142.

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部