摘要
将K-L信息D(p,p0)推广到p0为非负有限可测函数,讨论了D(p,p0)在定义域约束、可测函数组的期望值约束和同时具有两个约束条件下的最小化问题,以及它们的逆问题.指出任何均匀分布族、负指数分布族和正则指数分布族都是最小化广义K-L信息的解.
K-L information D(p,p0 ) is extended to non negative measurable function under domain constraint or expectation constraints or both, and the inverse problem is discussed. It is pointed out that the uniform distribution, negative exponential distribution and regular exponential type distribution are the solution of this problem.
出处
《郑州大学学报(理学版)》
CAS
2006年第3期28-31,共4页
Journal of Zhengzhou University:Natural Science Edition
关键词
概率测度
K—L信息
测度变差
梯度
probability measure
K- L information
measure deviation
gradient