摘要
对于图G内的任意两点u和v,在u和v之间的最短路称为u-v测地线.I(u,v)表示位于u-v测地线上所有点的集合,对于S V(G),I(S)表示所有I(u,v)的并,这里u,v∈S.如果I(S)=V(G),那么称S是G的测地集;并把测地集的最小基数称为G的测地数,记为g(G).文章主要研究Cn×K3的测地数.
For any two vertices u and v in a graph G, a u - v geodesic is a shortest path between u and v. Let I ( u, v) denote the set of all vertices lying on a u - v geodesic. For a vertex subset S, let I(S) denote the union of all I(u, v) for u, v∈ S. If I(S) = V(G),then S is a geodetic set of G. The minimum cardinality of a geodetic set in G is named the geodetic number of G, denoted g(G). In this paper, we explore the geodetic number on Cn×K3.
出处
《淮北煤炭师范学院学报(自然科学版)》
2006年第3期12-14,共3页
Journal of Huaibei Coal Industry Teachers College(Natural Science edition)
基金
国家自然科学基金资助项目(10301010)
上海科委资助项目(04JC14031)
安徽省教育厅自然科学基金资助项目(2006KJ256B)
关键词
笛卡儿积
测地线
测地集
测地数
Cartesian product
geodesic
geodetic set
geodetic number