期刊文献+

关于圈与完全图的笛卡儿积的测地数 被引量:1

The Geodetic Number of Cartesian Product on Cycles and Complete Graphs
下载PDF
导出
摘要 对于图G内的任意两点u和v,在u和v之间的最短路称为u-v测地线.I(u,v)表示位于u-v测地线上所有点的集合,对于S V(G),I(S)表示所有I(u,v)的并,这里u,v∈S.如果I(S)=V(G),那么称S是G的测地集;并把测地集的最小基数称为G的测地数,记为g(G).文章主要研究Cn×K3的测地数. For any two vertices u and v in a graph G, a u - v geodesic is a shortest path between u and v. Let I ( u, v) denote the set of all vertices lying on a u - v geodesic. For a vertex subset S, let I(S) denote the union of all I(u, v) for u, v∈ S. If I(S) = V(G),then S is a geodetic set of G. The minimum cardinality of a geodetic set in G is named the geodetic number of G, denoted g(G). In this paper, we explore the geodetic number on Cn×K3.
出处 《淮北煤炭师范学院学报(自然科学版)》 2006年第3期12-14,共3页 Journal of Huaibei Coal Industry Teachers College(Natural Science edition)
基金 国家自然科学基金资助项目(10301010) 上海科委资助项目(04JC14031) 安徽省教育厅自然科学基金资助项目(2006KJ256B)
关键词 笛卡儿积 测地线 测地集 测地数 Cartesian product geodesic geodetic set geodetic number
  • 相关文献

参考文献7

  • 1[1]CHARTRAND G,ZHANG P.The forcing geodetic number of a graph[J].Discuss Math Graph Theory,1999,19:45-48.
  • 2[2]CHARTRAND G,ZHANG P.The geodetic number of an oriented graph[J].European J Combin,2000,21:181-189.
  • 3[3]CHARTRAND G,HARARY F,ZHANG P.On the geodetic number of a graph[J].Networks,2002,39:1-6.
  • 4[4]CHANG G J,TONG L D,WANG H T.Geodetic spectra of graphs[J].European J Combin,2004,25:383-391.
  • 5[5]LU C H.The geodetic numbers of graphs and digraphs[J].Preprint of Department of Mathematics,ECNU,2004.
  • 6[6]康朝翔.图的测地数[D].台湾:台湾大学数学系,2004.
  • 7叶永升,莫艳红,吕长虹.关于图运算的测地数(英文)[J].淮北煤炭师范学院学报(自然科学版),2005,26(2):1-5. 被引量:1

二级参考文献11

  • 1[1]Bonnesens T,Fenchel W.Theorie der Konvexen K(o) rper[M].Berlin: Springer,1934.(Translated by Boron L,Christenson C,Smith B.Theory of convex bodies,Moscow:BCS Associates,ID,1987).
  • 2[2]Buckley F,Harary F.Distance in Graphs[M].Redwood City,CA:Addison- Wesley,1990.
  • 3[3]Harary F,Nieminen J.Convexity in graph[J].J Differential Geom,1981,16:185- 190.
  • 4[4]Everett M G,Seidman S B.The hull number of a graph[J].Discrete Math,1985,57:185- 190.
  • 5[5]Chartrand G,Harary F,Zhang P.On hull number of a graph[J].Ars Combin, 2000, 20: 129- 138.
  • 6[6]Chartrand G,Zhang P. The forcing hull number of a graph[J]. J Combin Math Combin Comput,(in press).
  • 7[7]Mulder H M.The expansion procedure for graphs.in:Bodendiek R(Ed.).Contemporary Methods in Graph Theory[C]. Mannheim:Wissenschaftsverlag,1990,459- 477.
  • 8[8]Chartrand G,Zhang P.The geodetic number of an oriented graph[J].European J Combin,2000,21:181- 189.
  • 9[9]Lu C H.The geodetic numbers of graphs and digraghs[J].Submitted,2004.
  • 10[10]Chang G J,Tong L D,Wang H T.Geodetic spectra of graphs[J].European J Combin,2004,25:383- 391.

同被引文献3

引证文献1

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部