期刊文献+

Black-Scholes模型期权定价方法及其应用 被引量:4

Black-Scholes stock option pricing model and its application
下载PDF
导出
摘要 介绍了标准的B lack-Scholes期权定价,推导出欧式期权定价的一般微分方程及其解,给出了欧式看涨和看跌期权的定价公式以及平价关系,并对此加以分析和修改后,使之应用于欧式期权衍生证券的定价、套期保值以及标的资产支付红利等各种情形。 This paper introduces standard Black -Scholes stock option pricing model,deduces European - style differential equation and its solution,gives pricing formula and relation of the rise and fall of the shares according to European - style equation,analyzes and modifies the equation in order to apply the equation to pricing European - style derived securities and hedging and dividend oayment of the volatilitv of the assets.
出处 《重庆工商大学学报(自然科学版)》 2006年第4期351-353,共3页 Journal of Chongqing Technology and Business University:Natural Science Edition
基金 国家自然科学基金资助项目(40271037)
关键词 Black—Scholes模型 期权定价 欧式期权 红利 Black - Scholes model stock option pricing European - style stock option dividend
  • 相关文献

参考文献7

  • 1BLACK F, SCHOLES M. The pricing of options corporate liabilities[ J ]. Journal of Political Economy, 1973,81 (3) :637 -659
  • 2JOHN C, HULL O. Futures and Other Derivatives [ M ]. Beijing: Huaxia press,1998
  • 3[美]约翰·赫尔.期权、期货与衍生证券[M].张陶伟,译.北京:华夏出版社,1997
  • 4MERTON R C. Theory of rational option pricing[ J ]. Bell J Economics and management science, 1973,4( 1 ) :141 - 183
  • 5张顺明,邓敏.证券估值Black-Scholes模型的一般化(英文)[J].经济数学,1999,16(2):13-20. 被引量:8
  • 6ROSS COX J C, RUBINISTEIN S A. Option pricing: A simplified approach[ J ]. Journal of Economics, 1979,7 (2) : 229 -263
  • 7KOURITZIN M A, DELI L. On explicit solution to stochastic differential equation[ J ]. Stochastic Analysis and Applicaions,2000,18(4) :571 -580

共引文献8

同被引文献23

  • 1郑小迎,陈金贤.有交易成本的期权定价研究[J].电子科技大学学报(社科版),2000,2(2):110-112. 被引量:4
  • 2詹惠蓉,程乾生.亚式期权在依赖时间的参数下的定价[J].管理科学学报,2004,7(6):24-29. 被引量:10
  • 3罗庆红,杨向群.几何型亚式期权的定价研究[J].湖南文理学院学报(自然科学版),2007,19(1):5-7. 被引量:11
  • 4李晓雷.Black-Scholes期权定价模型修正[J].周口师范学院学报,2007,24(2):43-45. 被引量:3
  • 5Hull J C.Option,futures and other derivatives[M].4th ed.New Jersey:Prentice-Hall,2000.
  • 6Miklav Z,Mastin sek.Discrete-time delta hedging and the Black-Scholes model with transaction costs[J].Mathematical Methods of Operations Research,2006,64(2):227-236.
  • 7Sheldon M Ross.An elementary introduction to mathematical finance:Options and other topics[M].2nd ed.England:Cambridge University Press,2003.
  • 8LAMBERTON D, LAPEYRE B. Introduction to Stochastic CalculusApplied to Finance[ M ]. New York:Chapman & Hall, 1996.
  • 9HARRISON J M ,PLISKA S R. Martingale and Stochastic Integrals in the Theory of Continuous Trading[ J]. Stochastic processes and their applications, 1951,11 ( 2 ) : 215-260.
  • 10约翰·赫尔,张陶伟译.期权、期货及其它衍生产品[M].北京:华夏出版社.1999.

引证文献4

二级引证文献8

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部