期刊文献+

应用Hilbert时频谱和神经网络对发电机转子故障进行分类的方法研究

Classification for Fault of Generator Rotor Based on Hilbert Time-frequency Spectrum and Neural Network
下载PDF
导出
摘要 提出了一种新的发电机转子故障检测的信号分类方法H ilbert时频谱,它是一种新的分析非平稳、非线性的时频分析方法。这种方法用经验模式分解法将一维信号分解成内蕴模式函数,进而计算有意义的多分量信号的瞬时频率。将其应用于故障信号的分析,可以提供新的时频属性;然后计算这种时频谱的矩和边缘以及时频熵,并将其作为特征向量。应用RBF概率神经网络作为分类器,可以实现不同故障模式的自动分类。对发电机的不同转子故障模式的信号研究表明了该方法的精确性和稳定性。 A new fault detection method for signal classification in generator was presented. It is a new method for processing non - stationary, signal. This method decomposes the one- dimensional signals into intrinsic mode functions (IMFs) using empirical mode decomposition method and then calculates the meaningful multi -component instantaneous frequency. Applied to a fault signals analysis, it can provide more new time - frequency attributes, Then the moments, margins and entropy of the time - frequency spectrum can be calculated as the feature vectors. The probabilistic neural network can be used to classify different fault modes. The accuracy and robustness of the proposed methods were investigated on signals of different fault condition in generator rotor.
作者 张云 周剑利
出处 《机床与液压》 北大核心 2006年第9期233-235,共3页 Machine Tool & Hydraulics
关键词 发电机转子 故障分类 神经网络 Hilbert时频谱 Generator rotor Fault classification Neural network Hilbert t-f spectrum
  • 相关文献

参考文献5

  • 1Ivan Magrin-Chagnolleau,Richard G.Baraniuk.Empirical mode decomposition based time-frequency attributes[C].Proceedings of the 69th SEG Meeting,Houston,Texas,USA,1999.
  • 2N.E.Huang,Z.Shen,S.R.long,et al..The empirical mode decomposition and the hilbert spectrum for nonlinear and non-stationary time series analysis[C].Proc.Roy.Soc.,London.A,1998,454:903-995.
  • 3R.Baraniok,D.Jones.A signal dependent time-frequency representation:optimal kernel design[J].IEEE Trans.On Signal Processing,1993,41:1589-1602.
  • 4Zbigniew Leonowicz,Tadeusz Lobos.Application of Time-Frequency Distribution and Neural Networks for Fault Classification in Power Electronics[C].International symposium on Computational Intelligence for Measurements and applications,2003:67-71.
  • 5Matlab ToolBox.Neural Networks[OL].Radial Basis Networks,online http://www.mathworks.com.

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部