期刊文献+

半严格不变拟单调性 被引量:1

Semistrict Invariant Quasimonotonicity
下载PDF
导出
摘要 对文献[1]中的半严格拟单调映射进行推广,定义了半严格不变拟单调映射,并建立了半严格预拟不变凸函数与半严格不变拟单调映射之间的关系。 In this paper, semistrict invariant quasimonotonicity is introduced. Semistfict invarlant quasimonotonicity is defined by the generalization of semistfict quasimonotonicity in reference [ 1 ]. Relationship between semistfict prequasi-invexity and semistfict invariant quasimonotonicity is established.
作者 文乾英
出处 《重庆师范大学学报(自然科学版)》 CAS 2006年第3期20-22,共3页 Journal of Chongqing Normal University:Natural Science
基金 国家自然科学基金(No.10471159) 重庆市自然科学基金
关键词 半严格不变拟单调映射 半严格预拟不变凸函数 semistrict invariant quasimonotone semistrict prequasi-invex
  • 相关文献

参考文献8

  • 1HADJISAVVAS N, SCHAIBLE S. On Strong Pseudomonotonicity and (Semi) Strict Quasimonotonicity [J]. Journal of Optimization Theory and Applications, 1993,79( 1 ) : 139-155.
  • 2KARAMARDIAN S, SCHAIBLE S. Seven Kinds of Monotone Maps [J]. Journal Optimization Theory and Applications, 1990,66( 1 ) :37-46.
  • 3RUIZ-GARZON G, OSUNA-GOMEZ R, UFIAN-LIZA NAA. Generalized Invex Monotonicity [J]. European Journal of Operational Reserch ,2003,144:501-512.
  • 4YANG X M, YANG X Q, TEO K L. Generlized Invexity and Generalized Invariant Monotonicity [J]. Journal of Optimization Theory and Applications, 2003,117 ( 3 ) : 607-625.
  • 5MOHAN S R, NEOGY S K. On Invex Sets and Prinvex Functions[J]. Journal of Mathematical Analysis and Aplications, 1995,189:901-908.
  • 6PINI R. Invexity and Generalized Convexity [J]. Optimition, 1991,22:513-525.
  • 7YANG X M, YANG X Q, TEO K L. Characterizations and Applications of Prequasi-Invex Functions [J]. Journal of Optimization Theory and Applications ,2001,110 ( 3 ) :645-668.
  • 8YANG X M, YANG X Q, TEO K L. Criteria for Generalized Invex Monotonicities [J]. European Journal of Operational Research ,2005,164 : 115-119.

同被引文献7

  • 1T. Jabarootian, and J. Zafarani. Generalized Invariant Monoto- nicity and Invexity of Non-- differentiable Functions[J]. Journal of Global Optimization ,2006.
  • 2F. H. Clark, R. J. Stern, Y. S. Ledyaev, and P. R. Wolenski. Nonsmooth Analysis and Control Theory [J]. Springer, New York,1998.
  • 3S. R. Mohan and S. K. Neogy. On Invex Set and Prinvex Functions [J].Journal of Mathematical Analysis and Aplications, 1995,189 : 901--908.
  • 4R. Pini, Invexity and Generalized Convexity[J].Optimition, 1991, 22: 513--525.
  • 5X.M. Yang, X.Q. Yang, and K. L. Teo, Characterizations and Applications of Prequasi--Invex Functions[J]. Journal of Optimi- zation Theory and Applications, 2001,110 (3) : 645 -- 668.
  • 6X.M. Yang, X.Q. Yang, and K. L. Teo. Generalized Invexity and Generalized Invariant Monotonicity[J]. Journal of Optimiza- tion Theory and Applications, 2003,117 (3) : 607--625.
  • 7X.M. Yang, X.Q. Yang, and K. L. Teo,Criteria for Generalized Invex Monotonieities [J] . European Journal of Operational Re- search,2005,164 : 115-- 119.

引证文献1

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部