期刊文献+

福建闽江河口水下地形变化的遥感分析 被引量:1

Remote Sensing Analysis on the change of Underwater Topography in Minjiang Estuary,Fujian Province
下载PDF
导出
摘要 本文利用Landsat-TM影像,建立了闽江河口的遥感水深模型,对河口区的水下地形进行了解译,并分析了其水下地形变化状况及影响因素,认为淤积主要发生在水动力条件较弱以及泥沙含量较高的地区,主要是在梅花水道琅岐岛南侧、鳝鱼沙及其附近区域、乌渚水道靠近主航道的部分以及内拦门沙区等大片区域。冲刷区主要是发生在水流转向或者水动力条件强的区域,主要是闽江从亭江至头深水槽、梅花水道中径流作用弱而潮流作用强的区域等。闽江主航道深水槽处于冲刷状态,而主航道两侧淤积。 Using the image of Landsat-TM, This paper builds the water depth model of Minjiang Estuary, interpreted the underwater topography and analyzes the change and the influence factor of the underwater topography. It concludes that alluvial action takes place in where water dynamical condition is weak and the concentration of mud and sand is high, such as the south of Langqi Island of Meihua Water Road, the nearby area of Shanyusha, the part of Wuzhu Water Road, which is near the main sea channel and the part of Leilanmensha and that erosion takes place in where the water flow turns around and the water dynamical condition is strong It further includes that the runoff in the deep water groove from Tingjiang to Guanto and the area in Meihua Water Road is weak and the tide is strong. The deep water groove of the main sea channel of Minjiang is under erosion and the two sides of the sea-route are under alluvial action.
出处 《工程勘察》 CSCD 北大核心 2006年第9期33-38,共6页 Geotechnical Investigation & Surveying
基金 国土资源部科学基金项目([2003]07-04)
关键词 遥感水深模型 水下地形 闽江河口 remote sensing water depth model underwater topography minjiang Estuary
  • 相关文献

参考文献6

二级参考文献20

  • 1李成治,黄海军,李本川,张桂华,郭建军.遥感技术在渤海海岸动态研究中的应用[J].海洋科学,1994,18(2):19-20. 被引量:1
  • 2冯辉 益建芳 恽才兴.闽江口通海航道遥感影像初步分析[R]..福州港航道第二期整治工程工程可行性研究报告[C].,1988.28—37.
  • 3冯增昭,中国沉积学,1994年,513页
  • 4团体著者,闽江河口区动力地貌,1989年,1,34,127页
  • 5曾允孚,沉积岩石学,1986年,229页
  • 6里丁 H G,沉积环境和相,1985年,127页
  • 7任明达,现代沉积环境概论,1981年,127页
  • 8徐正群 张学梓.淮安分流口整治工程设计书[R].福州:福建省港航局,1981..
  • 9黄仕木梁.马尾港整治工程设计书[R].福州:福建省港航局,1980..
  • 10福建省港航局设计室.福州港航道第二期整治工程可行性研究(航道工程)[R].福州:福建省港航局,1988..

共引文献35

同被引文献16

  • 1白世彪,王建,闾国年,黄家柱.水下地形冲淤变化可视化计算方法[J].工程勘察,2006,34(11):54-56. 被引量:2
  • 2S. Foti, D. Sabia. Influence of foundation scour on the dynamic response of an existing bridge [ J ]. Journal of Bridge Engineering, 2011, 15:295 -304.
  • 3M. Rambahu, S. Narasimha Rao, V. Sundar h. Current- induced scour around a vertical pile in cohesive soil [ J]. Ocean Engineering, 2003, 30:893 - 920.
  • 4Murray Fisher, Md. Nasimul Chowdhury, Abdul A. Khan. An evaluation of scour measurement devices [ J ]. Flow Measurement and Instrumentation, 2013, 33 : 55 - 67.
  • 5Femando De Falco, Raffaele Mele. The monitoring of bridges for scour by sonar and sedimetri [J]. NDT&E International, 2002, 35:117 -123.
  • 6C. Faraci, E. Foti, S. Baglio. Measurements of sandy bed scour processes in an oscillating flow by using structured light [J]. Measurement, 2000, 28 : 159 - 174.
  • 7Murray Fisher, Sez Atamturktur, Abdul A Khan. A novel vibration-based monitoring technique for bridge pier and abutment scour [J]. Structural Health Monitoring, 2013, 12 (2) : 114 - 125.
  • 8Lu Deng, C. S. Cai. Bridge scour: prediction, modeling, monitoring, and countermeasures--review [ J ]. Practice Periodical on Structural Design and Construction, 2010, 15: 125 - 134.
  • 9Franceseo Ballio, Alessio Radiee. A non-touch sensor for local scour measurements [ J]. Journal of Hydraulic Research, 2003, 41 (1): 105-108.
  • 10Yung Bin Lin, Jihn Sung Lai, Kuo Chun Chang et al. Flood scour monitoring system using fiber Bragg grating sensors [ J ]. Smart Materials and Structures, 2006, 15 (6) : 1950 - 1959.

引证文献1

二级引证文献1

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部