期刊文献+

针对FastICA计算终点判断的算法改进 被引量:1

An Algorithm Improvement for Judging Computing End-point in FastICA
下载PDF
导出
摘要 独立分量分析不能分离高斯分布信号,导致对含高斯噪声系统计算不收敛;FastICA可以从系统中逐个计算出独立分量,通过计算系统残余信息的自相关函数值,判断残余信息属性,找出独立分量分析的计算终点,对FastICA算法进行改进,可以避免无效计算,节省计算时间。改进后的算法可以自动判断含噪声的线性系统的独立分量数目,与预先定义分量数目的独立分量分析相比,具有更好的降噪效果。 The independent component analysis(ICA) can not separate the mixed Gaussian signal,and ICA may be nonconvergent in system which contains Gaussian noise.FastICA is one current ICA algorithm.After one independent component (IC)is figured out in FastICA,the next IC is figured out from the system remaining information.Computing autocorrelation value of remaining information and judging its attribute,the computation end point of ICA is found out and improvement is made in FastICA algorithm.The improvement may avoid useless computing and save computing time.The improved algorithm can judge automatically ICs number of linear system contained noise,Compared with ICA predefining ICs number,the improved algorithm has better effect in noise reduction.
出处 《计算机工程与应用》 CSCD 北大核心 2006年第26期46-48,162,共4页 Computer Engineering and Applications
基金 中国博士后科学基金资助项目(编号:200537583) 广西科学基金资助项目(桂科基0448010)
关键词 独立分量分析 FASTICA 降噪 算法改进 independent component analysis,FastICA,noise reduction,algorithm improvement
  • 相关文献

参考文献14

  • 1Hyvarinen A,J Karhunen,E Oja.Independent component analysis[M].John Wiley and Sons Press,2001
  • 2王毅,牛奕龙,陈海洋.独立分量分析的基本问题与研究进展[J].计算机工程与应用,2005,41(27):38-42. 被引量:19
  • 3Ma J et al.Wavelet denoise on MRS data based on ICA and PCA[C].In:Advances in Neural Networks-Isnn 2005,Pt 3,Proceedings,2005;3498:748~753
  • 4Han X H,Y W Chen,Z Nakao.An ICA-based method for Poisson noise reduction[C].In:Knowledge-Based Intelligent Information and Engineering Systems,Pt 1,Proceedings,2003 ;2773:1449~1454
  • 5张智林,皮亦鸣,孙志坚.基于独立分量分析的降噪技术[J].电子科技大学学报,2005,34(3):296-299. 被引量:11
  • 6Albazzaz H,X Z Wang.Historical data analysis based on plots of independent and parallel coordinates and statistical control limits[J].Journal of Process Control,2006; 16(2):103~114
  • 7Lee J A,C Jutten,M Verleysen.Non-linear ICA by using isometric dimensionality reduction[J].Independent Component Analysis and Blind Signal Separation,2004; 3195:710~717
  • 8Verleysen M,D Francois.The curse of dimensionality in data mining and time series prediction[C].In:Vilanova i la Geltru,Spain:Springer Verlag,Heidelberg,D-69121,Germany,2005
  • 9何宁,谢磊,郭明,王树青.基于独立成分的动态多变量过程的故障检测与诊断方法[J].化工学报,2005,56(4):646-652. 被引量:8
  • 10姚志湘,刘焕彬.独立元及小波分析估计多元系统状态变量[J].控制与决策,2006,21(1):88-92. 被引量:6

二级参考文献49

  • 1张贤达,保铮.盲信号分离[J].电子学报,2001,29(z1):1766-1771. 被引量:211
  • 2Widrow B. Adaptive noise canceling: principles and applications[J]. Proc. IEEE, 1975,63(12): 1 692-1 716
  • 3Hyvarinen A, Oja E. Independent component analysis: algorithms and applications[J]. Neural Networks, 2000, 13(4-5): 411-430
  • 4Hyvarinen A, Karhunen J, Oja E. Independent component analysis[M]. New York: John Wiley & Sons, Inc, 2001:147-289
  • 5Hyvarinen A. Fast and robust fixed-point algorithm for independent component analysis[J]. IEEE Trans. On Neural Networks, 1999,10(3): 626-634
  • 6Cardoso J F, Hvam L B. Equivariant adaptive source separation[J]. IEEE Trans. On Signal Processing, 1996, 44 (12):3 017-3 030
  • 7Cardoso J F. Informax and maximum likelihood for source separation[J]. IEEE Signal Processing Letters, 1997,4:112-114
  • 8Makeig S et al.Independent component analysis in electroencephalographic data[C].In:Advances in Neural Information Processing Systems,Denver,CO:MIT Press, 1996:145~151
  • 9Lee T W et al. Independent component analysis using an extended Infomax algorithm for mixed subgaussian and supergaussian sources[J].Neural Computation, 1999; 11:417~441
  • 10Papadias C B,Paulraj A.A constant modulus algorithm for multi-user signal separation in presence of delay spread using antenna arrays[J].IEEE Signal Processing Lett, 1997; 4 (6): 178~181

共引文献43

同被引文献13

引证文献1

二级引证文献4

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部