期刊文献+

增量式贝叶斯分类的原理和算法 被引量:7

Principle and algorithm of incremental Bayes classification
下载PDF
导出
摘要 自动分类是数据挖掘和机器学习中非常重要的研究领域.针对难以获得大量有类标签的训练集问题,提出了基于小规模训练集的增量式贝叶斯分类,给出增量式贝叶斯分类机理参数计算及其算法.对算法分两种情况处理:第一种情况是新增样本有类别标签,则利用现有分类器检验其类标签,如果匹配则保留当前分类器,否则利用新样本修正分类器;第二种情况是新增样本无类别标签,则利用现有分类器为其训练类标签,然后利用新样本来修正分类器.实验结果表明,该算法是可行有效的,比简单贝叶斯分类算法有更高的精度.增量式贝叶斯分类算法的提出为分类器的更新提供了一条新途径. Automatic classification is an important research field in data mining and machine learning. An incremental Bayes classification principle, parameter calculation and algorithm based on small training set was presented to solve the difficult problem involving getting labeled training documents. Two cases can be processed by the algorithm: the labled and unlabeled incremental documents. The labeled documents are labeled using the original classification, and if match then remain the classifier, the new classification is trained from the incremental documents. The unlabeled documents are labeled using the original classification, and then the new classification is trained from the incremental documents. The experimental results show that this algorithm is feasible and effective, more accurate than Nave Bayes classification algorithm. The incremental Bayes classification algorithm provides a new method for updating of classification.
出处 《沈阳工业大学学报》 EI CAS 2006年第4期422-425,433,共5页 Journal of Shenyang University of Technology
基金 国家自然科学基金资助项目(10471096)
关键词 增量学习 贝叶斯分类 类别标签 分类算法 贝叶斯网络 incremental learning Bayes classification classification label classification algorithm Nave Bayes
  • 相关文献

参考文献8

二级参考文献22

  • 1宫秀军 史忠植.基于贝叶斯潜在语义模型的半监督Web挖掘[J].软件学报,已录用,.
  • 21.Chickering D. Learning equivalence classes of Bayesian networks structures. In: Horvitz E, Jensen F ed. Proceedings of the 12th Conference on Uncertainty in Artificial Intelligence. San Francisco, CA: Morgan Kaufmann Publishers, Inc., 1996. 54~61
  • 32.Geriger D, Hekerman D. A charactererization of the Dirichlet distribution with application to learning Bayesian networks. In: Besnard P, Hanks S eds. Proceedings of the 11th Conference on Uncertainty in Artificial Intelligence. Morgan Kaufmann Publishers Inc., 1995. 196~207
  • 43.Heckman D. A Bayesian approach for learning causal networks. In: Besnard P, Hanks S eds. Proceedings of the 11th Conference on Uncertainty in Artificial Intelligence. San Francisco, CA: Morgan Kaufmann Publishers, Inc., 1995. 285~295
  • 54.Heckman D, Geiger D, Chickering D. Learning Bayesian networks: the combination of knowledge and statistical data. Machine Learning, 1995,20(3):197~243
  • 65.Heckman D, Shachter R. Decision-Theoretic foundations for causal reasoning. Journal of Artificial Intelligence Research, 1995,3:405~430
  • 76.Heckman D, Mandani A, Wellman M. Real-World applications of Bayesian networks. Communications of the ACM, 1995,38(3):38~45
  • 87.Buntine W. Theory refinement on Bayesian networks. In: Proceedings of the 7th Conference on Uncertainty in Artificial Intelligence. Los Angeles, CA: Morgan Kaufmann Publishers, Inc., 1991. 52~61
  • 98.Cooper G, Herskovits E. A Bayesian method for the introduction of probabilistic networks from data. Machine Learning, 1992,9(4):309~347
  • 109.Russell S, Binder J, Koller D et al. Local learning in probabilistic networks with hidden variables. In: Cooper G F, Moral S ed. Proceedings of the 14th International Joint Conference on Artificial Intelligence. San Francisco, CA: Morgan Kaufmann Publishers, Inc., 1998. 1146~1152

共引文献213

同被引文献55

引证文献7

二级引证文献35

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部