期刊文献+

未知动态环境中基于分层强化学习的移动机器人路径规划 被引量:15

Mobile Robot Path Planning Based on Hierarchical Reinforcement Learning in Unknown Dynamic Environment
下载PDF
导出
摘要 提出了一种基于分层强化学习的移动机器人路径规划算法.该算法利用强化学习方法的无环境模型学习能力以及分层强化学习方法的局部策略更新能力,克服了路径规划方法对全局环境的静态信息或动态障碍物的运动信息的依赖性.仿真实验结果表明了算法的可行性,尽管在规划速度上没有明显的优势,但其应对未知动态环境的学习能力是现有其它方法无法比拟的. A path-planning algorithm based on hierarchical reinforcement learning is presented. Since the reinforcement learning approach is introduced, the algorithm is provided with the capability of learning without environment model. The hierarchical reinforcement learning method is mainly employed for updating local strategies. So, this algorithm can eliminate its dependence on the static information of the global environment or the moving information of the dynamic obstacles. Simulation experiment shows the feasibility of the algorithm. Although there is no obvious advantage in planning speed, the learning ability of the algorithm in unknown dynamic environment is unique.
出处 《机器人》 EI CSCD 北大核心 2006年第5期544-547,552,共5页 Robot
基金 国防基础研究计划资助项目 哈尔滨工程大学基础研究基金资助项目(HEUFT05068 HEUFT05021)
关键词 移动机器人 未知动态环境 路径规划 分层强化学习 mobile robot unknown dynamic environment path planning hierarchical reinforcement learning
  • 相关文献

参考文献25

二级参考文献43

  • 1阎平凡.再励学习——原理、算法及其在智能控制中的应用[J].信息与控制,1996,25(1):28-34. 被引量:30
  • 2孙增圻等.智能控制理论与技术[M].北京:清华大学出版社,..
  • 3[3]P Fiorini, Z Shiller. Robot motion planning in dynamic environments. In: G Girald, G Hirzinger. International?Symposium of Robotic Research. Munich, Germany: Springer-Verlag, October 1995,237-248
  • 4[4]Th Fraichard, C Laugier, G Lievin. Robot motion planning-the case of non-holonomic mobiles in a dynamic world. In: Proc of the IEEE/RSJ Int Workshop on Intelligent Robots and Systems Japan, July 1990, 757-764
  • 5[5]Jaydev P Desai. Motion Planning and Control of Cooperative Robotic Systems [PhD thesis]. University of Pennsylvania, October,1998
  • 6[6]Christopher M Clark, Stephen Rock. Randomized motion planning for groups of nonholonomic robots. In: Proceedings of the 6th International Symposium on Artificial Intelligence, Robotics, and Automation in Space Canada, June 2001
  • 7[7]Th Fraichard, Y Demazeau. Motion Planning in a Multi-Agent World. In: Y. Demazeau J P Muller. Decentralized AI: Proceedings of the First 22 European Workshop on Modeling Autonomous Agents in a Multi-Agent World. Amsterdam, The Netherlands: Elsevier Science, 1990,137-153
  • 8Borenstein J, Koren Y. The vector field histogram - fast obstacle avoidance for mobile robots[ J]. IEEE Journal of Robotics and Automation ,1991,7(3) : 278 -288.
  • 9Kehtaraavaz N, Grisworld, Lee J. Visual control for an autonomous vehicle(BART) -the vehicle following problem[J]. IEEE Transcation on Vehicular Technology. 1991,40(3) :654 -662.
  • 10Fujimori A, Nikiforuk P N, Gupta M M. Adaptive navigation of mobile robots with obstacle avoidance[ J]. IEEE Transcations On Robotics and Automation. 1997,13(4) :596 -601.

共引文献324

同被引文献145

引证文献15

二级引证文献153

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部