期刊文献+

LPG浓度对DME/LPG混合燃料HCCI燃烧的影响 被引量:3

Effect of LPG concentration on the combustion of DME/LPG blended fuel by using HCCI
下载PDF
导出
摘要 通过分析二甲醚(DME)与液化石油气(LPG)的化学反应机理,构建了反映DME/LPG混合燃料均质压燃(HCCI)燃烧的化学反应机理.采用该机理应用单区燃烧模型对DME/LPG混合燃料HCCI燃烧的化学反应动力学过程进行了数值计算,模拟研究了混合燃料中LPG浓度对HCCI燃烧的影响.计算结果与试验结果对比表明,所构建的DME/LPG混合燃料氧化的化学反应机理能够准确预测DME/LPG混合燃料的两阶段放热特性,对低温和高温着火始点的预测很好.模拟结果显示,改变DME/LPG混合燃料中LPG的浓度可以控制HCCI着火和燃烧;在DME中添加LPG可以拓宽发动机的负荷运行范围. The chemical kinetic mechanisms of dimethyl ether (DME) and LPG was analyzed. A chemical kinetic mechanism was put forward to explain the combustion of DME/LPG blended fuel by using HCCI. On the basis of the proposed mechanism, the chemical kinetic process of the combustion of DME/LPG blended fuel with HCCI was simulated by single zone model. The effect of LPG concentration on HCCI combustion was numerically studied. Comparison between simulation and experiment indicates that the proposed detailed mechanism of DME/LPG oxidation can precisely predict the twostage heat release characteristics of DME/LPG HCCI combustion and the predicted ignition timings of low temperature reaction and high temperature reaction are agreed well with the experimental ones. The simulated results suggest that altering the LPG concentration in DME/LPG blended fuel can control HCCI ignition and combustion process and the load operating range of HCCI engines can be extended by adding LPG into DME.
作者 罗马吉 黄震
出处 《华中科技大学学报(自然科学版)》 EI CAS CSCD 北大核心 2006年第9期88-90,共3页 Journal of Huazhong University of Science and Technology(Natural Science Edition)
基金 国家杰出青年科学基金资助项目(50025619) 国家重点基础研究发展计划资助项目(2001CB209208)
关键词 柴油机 均质压燃燃烧 反应机理 二甲醚 液化石油气 diesel engine homogeneous charge comperession ignition (HCCI) reaction mechanism dimethyl ether liquefied petroleum gas
  • 相关文献

参考文献4

二级参考文献26

  • 1乔信起,宋永臣,高希彦,陈家骅,黄震.柴油机伞帘喷雾燃烧系统的试验研究[J].上海交通大学学报,2004,38(7):1193-1196. 被引量:2
  • 2Yamasaki Y, Takahashi S. Auto-ignition and combustion analysis of DME air homogeneous charge compression ignition engine by chemiluminescence measurement and numerical calculation [A]. ISAF XIV Technical Papers [C]. Phuket, Thailand: [s. n.],2000. 2002-VT-11.
  • 3Chen Zhili.Experimental study of CI natural-gas/DME homogeneous charge engine[A].SAE Paper[C].USA:SAE,2000.2000-01-0329.
  • 4Norimasa Lida, Tetsuya Igarashi. Auto-ignition and combustion of n-Butane and DME/air mixtures in a homogeneous charge compression ignition engine[A].SAE Paper[C]. USA:SAE,2000. 2000-01-1832.
  • 5Zhao H, Peng Z,and Ladommatos N.Understanding of Controlled Autoignition Combustion in a Four-stroke Gasoline Engine. Proc. Instn Mech Engrs, Part D, Journal of Automobile Engineering, 2001,215(D1)
  • 6Fiveland Scott B and Assanis Dennis N.A Four-Stroke Homogeneous Charge Compression Ignition Engine Simulation for Combustion and Performance Studies. SAE Paper 2000- 01 -0332
  • 7Keely-Zion Peter L and Dec John E.A Computational Study of the Effect of Fuel Type on Ignition Time In Homogeneous Charge Compression Ignition Engines. Proceedings of the Combustion Institute,2000,28
  • 8Aichlmayr H T, Kittelson D B,Zachariah M R.Miniature Free-piston Homogeneous Charge Compression Ignition Engince-compressor Concept-Part Ⅱ: Modeling HCCI Combustion in Small Scales with Detailed Homogeneous Gas Phase Chemical Kinetics. Chemical Engineering Science, 2002,57
  • 9U.S. Department of Energy Efficiency and Renewable Energy Office of Transportation Technologies. Homogeneous Charge Compression Ignition(HCCI) Technology--A Report to the U.S. Congress.2001
  • 10Rukdolf H S, et al. Homogenous Charge Compression Ignition(HCCI): Benefits, Compromises, and Future Engine Applications. SAE paper 1999 - 01 - 3682

共引文献14

同被引文献18

  • 1罗马吉,黄震.DME/LPG混合燃料HCCI燃烧模拟[J].工程热物理学报,2006,27(6):1060-1062. 被引量:4
  • 2纪威,符太军,姚亚光,周庆辉.柴油机燃用乙醇-柴油-生物柴油混合燃料的试验研究[J].农业工程学报,2007,23(3):180-185. 被引量:34
  • 3人民网.关注我国能源对外依存度[EB/OL]http://paper.people.com.cn/zgnyb/html/2011-01/24/content_731613.htm.
  • 4Girisuta B, Janssen L P B M, Heeresa H J. Green chemicals a kinetic study on the conversion of glucose to levulinic acid [J]. Chemical Engineering Research and Design, 2006, 84 (A5) : 339-349.
  • 5Jean-Paul Lange, Wouter D,van de Graaf, Rene J Haan. Conversion of furfuryl alcohol into ethyl levulinate using solid acid catalysts [J]. Chemistry and Sustainability, 2009 (2) : 437-441.
  • 6Fang Qi, Hanna Milford A. Experimental studies for levulinic acid production from whole kernel grain sorghum [J]. Bioresource Technology, 2002, 81 (3) : 187-192.
  • 7Villanueva Perales A L, Reyes Valle C, Ollero P, et al. Technoeconomic assessment of ethanol production via thermochemieal conversion of biomass by entrained flow gasification [J]. Energy, 2011,36 (7) : 4097-4108.
  • 8Carlo N Hamelinck, Geertje van Hooijdonk, Andre PC Faaij. Ethanol from lignocellulosic biomass: techno-economic perfor- mance in short-, middle- and long-term[J]. Biomass and Bioenergy, 2005,28 (4) :384-410.
  • 9Chang Chun, Cen Peilin, Ma Xiaojian. Levulinic acid production from wheat straw[J]. Bioresource Technology, 2007,98: 1448-1453.
  • 10Sen S M,Henao C A, Braden D J,et al. Catalytic conversion of lignocellulosic biomass to fuels:process development and technoeconomic evaluation [J]. Chemical Engineering Science, doi: 10.1016/j.ces, 2011,07,022.

引证文献3

二级引证文献10

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部