期刊文献+

关于NA随机变量极限定理的注记

Some Notes on the Limit Theorems of Negatively Associated Random Variables
下载PDF
导出
摘要 NA随机变量是一包含独立随机变量在内的有广泛应用的随机变量类,本文在一些更弱的条件下,建立了具有不同分布NA随机变量列的强大数律和有界重对数律,进而推广了已有的关于NA随机变量的结果。 Negatively associated random variables are a more general class of random variables which have been applied to many practical fields, a set of independent random variables is NA. In this paper, under some weaker conditions, we establish the strong laws of large number and the law of the iterated logarithm for negatively associated random variables with different distributions. The also obtained results for negatively associated random variables are generalized,
出处 《数学进展》 CSCD 北大核心 2006年第4期441-448,共8页 Advances in Mathematics(China)
基金 国家自然科学基金(No.10071003)及博士后基金.
关键词 NA随机变量 强大数律 有界重对数律 NA random variables strong laws of large number the law of the iterated logarithm
  • 相关文献

参考文献10

  • 1Joag-Dev, K. and Proschan, F., Negetive association of random variables with applications, Ann. Statist.1983, 11: 286-295.
  • 2Matula, P., A note on the almost sure convergence of sums of negatively dependent random variables,Statist. Probab. Lett., 1992, 3: 209-213.
  • 3Su Chun, Zhao Lincheng and Wang Yuebao, Moment inequalities and weak convergence for negatively associed sequences, Science in China (Series A), 1997, 40: 172-182.
  • 4苏淳,王岳宝.同分布NA序列的强收敛性[J].应用概率统计,1998,14(2):131-140. 被引量:59
  • 5Shao, Qiman, A comparison theorem on maximal inequalities betaween negatively associated and independent random variables, J. Theor. Probab., 2000, 13: :343-356.
  • 6Shao Qiman and Su Chun, The law of the iterated logarithm for negatively associated random variables,Stochastic Process. Appl., 1999, 83: 139-148.
  • 7王岳宝,周斌,苏淳.关于NA列部分和上升的阶[J].应用概率统计,1998,14(2):213-219. 被引量:23
  • 8董志山,杨小云,刘立新.非平稳NA随机变量满足迭对数律及大数定律的充分条件[J].数学学报(中文版),2002,45(6):1213-1220. 被引量:3
  • 9Wittmann, R,, A General law of iterated logarithm, Z. Wahr. Verw. Gob., 1985, 68: 521-543.
  • 10刘立新,吴荣.NA随机变量序列的最大部分和不等式及有界重对数律[J].数学学报(中文版),2002,45(5):969-978. 被引量:8

二级参考文献21

  • 1Wittmann R., A general law of iterated logarithm, Z. Wahrsch. Verw. Gebiete, 1985, 68: 521-543.
  • 2Joag-Dev K., Proschan F., Negative association of random variables with appilications, Ann. Statist., 1983, 11: 286-295.
  • 3Shao Q. M., Su C., The law of the iterated logarithm for negatively associated random variables, StochasticProcess. Appl., 1999, 83: 139-148.
  • 4Matula P., A note on the almost sure convergence of sums of negatively dependent random variables, Statist. Probab. Lett., 1992, 15: 209-213.
  • 5Liu L. X., The bounded law of iterated logarithm for NA random variables, Acta Math. Appl. Sinica, Submitted for Publication (in Chinese).
  • 6苏淳,科学通报,1997年,42卷,238页
  • 7迟翔,应用概率统计,1997年,13卷,199页
  • 8苏淳,科学通报,1996年,41卷,106页
  • 9苏淳,中国科学.A,1996年,26卷,1091页
  • 10邵启满,应用概率统计,1991年,7卷,174页

共引文献81

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部