期刊文献+

基于协同进化算法的高维模糊分类系统的设计

Design of High-dimensional Fuzzy Classification Systems Based on Cooperative Coevolutionary Algorithm
下载PDF
导出
摘要 基于协同进化算法,提出一种高维模糊分类系统的设计方法.首先定义系统的精确性指标,给出解释性的必要条件,利用聚类算法辨识初始模型.相互协作的3类种群分别代表系统的特征变量、规则前件和模型隶属函数的参数,适应度函数采用3类种群合作计算的策略,在算法运行中利用基于相似性的模型简化技术约简模糊系统,最后利用该方法对W ine问题进行研究.仿真结果表明该方法能够对高维分类问题的特征变量进行选择,同时利用较少规则和模糊集合数达到较高的识别率. An approach to construct high-dimensional fuzzy classification systems is proposed based on multi- objective cooperative coevolutionary algorithm. The precision index is defined, and the necessary conditions of interpretability are analyzed. The initial fuzzy system is identified using fuzzy clustering algorithm. Three cooperative species represent the relevant features, the structure and parameters of the fuzzy systems respectively. The fitness function is calculated on the cooperation of individuals from the three species. The similarity-driven rule based simplification method is applied to reduce the fuzzy model. By computational simulation on the wine classification problem, the proposed approach is able to generate compact fuzzy rule bases with high classification ability.
出处 《控制与决策》 EI CSCD 北大核心 2006年第9期984-990,共7页 Control and Decision
基金 国家自然科学基金项目(60332020 60474034)
关键词 模糊分类系统 模糊聚类 遗传算法 协同进化算法 解释性 精确性 Fuzzy classification systems Fuzzy clustering Genetic algorithm Coevolutionary algorithm Interpretability Precision
  • 相关文献

参考文献15

  • 1Setnes M,Roubos H.GA-fuzzy Modeling and Classification:Complexity and Performance[J].IEEE Trans on Fuzzy Systems,2000,8:509-522.
  • 2Jin Y.Fuzzy Modeling of High-dimensional Systems Complexity Reduction and Interpretability Improvement[J].Fuzzy Sets and Systems,2000,8(2):212-221.
  • 3Casillas J,Cord6n O,Herrera F,et al.Interpretability Improvements to Find the Balance Interpretabilityaccuracy in Fuzzy Modeling:An Overview[A].Chapter of Interpretability Issues in Fuzzy Modeling[C].Springer,2003:3-22.
  • 4Jin Y.Advanced Fuzzy Systems Design and Applications[M].New York:Physical-verl,2003.
  • 5Kaynak O,Jezernik K,Szeghegyi A.Complexity Reduction of Rule Based Models:A Survey[A].Proc of IEEE Int Conf on Fuzzy Systems[C].Honolulu,2002:1216-1222.
  • 6Guillaume S.Designing Fuzzy Inference Systems from Data:An Interpretability-oriented Review[J].IEEE Trans on Fuzzy Systems,2001,9(3):426-443.
  • 7Jin Y,Seelen von W,Sendhoff B.An Approach to Rule-based Knowledge Extraction[A].Proc IEEE Conf Fuzzy System[C].Alaska,1998:1188-1193.
  • 8Setnes M,Babuska R,Kaymak U,et al.Similarity Measures in Fuzzy Rule Base Simplification[J].IEEE Trans on Systems Man and Cybernetics,1998,28(3):376-386.
  • 9Ishibushi H,Nakashima T,Murata T.Performance Evaluation of Fuzzy Classifier Systems for Multidimensional Pattern Classification Problems[J].IEEE Trans on Systems,Man,and Cybernetics-Part B:Cybernetics,1999,29(5):601-618.
  • 10Michalewicz Z.Genetic Algorithms + Data Structures = Evolution Programs[M].3rd ed.Heidelberg:Springer-Verlag,1996.

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部