期刊文献+

KPCA-LSSVM建模方法及在钢材淬透性中的应用研究 被引量:2

Modeling Approach Based on KPCA-LSSVM and Its Application to Steel Harden-ability Prediction
下载PDF
导出
摘要 通过等式约束条件修改普通的支持向量机可以得到最小二乘支持向量机,不需要再次求解复杂的二次规划问题.提出了利用核主元分析进行特征提取,在高维特征空间中计算主元,降低样本的维数,然后用最小二乘支持向量机进行建模.仿真结果表明了该方法的有效性和优越性. The standard support vector machines (SVM) formulation is modified by considering equality constraints within a form of ridge regression instead of inequality constraints. The solution can be obtainsed from solving a set of linear equations instead of a quadratic programming problem. The kernel principal component analysis (KPCA) is applied to least squares support vector machines (LSSVM) for feature extraction. KPCA calculates principal component in high dimensional feature space. The way reduces dimensions of sample and regression is applied with the LSSVM. Simulation results show that the method proposed is effective and superior.
出处 《控制与决策》 EI CSCD 北大核心 2006年第9期1073-1076,共4页 Control and Decision
基金 国家科技部攻关基金项目(2003EG113016) 北京市教委重点学科共建基金项目
关键词 核的主元分析 最小二乘支持向量机 主元 特征提取 Kernel principal component analysis Least squares support vector machines Principal component Feature extraction
  • 相关文献

参考文献9

  • 1Vapnik V N.Statistical Learning Theory[M].New York,1998.
  • 2Suykens J A K.Nonlinear Modeling and Support Vector Machines[A].IEEE Instrumentation and Measurement Technology Conf[C].Budapest,2001:108-119.
  • 3Suykens J A K,Vandewalle J.Least Squares Support Vector Machine Classifiers[J].Neural Processing Letters,1999,9(3):293-300.
  • 4王华忠,俞金寿.基于PCA-SVM的软测量建模方法与应用[J].自动化仪表,2004,25(2):16-19. 被引量:11
  • 5冯瑞,沈伟,张艳珠,邵惠鹤.基于F_SVMs的多模型建模方法[J].控制与决策,2003,18(6):646-650. 被引量:8
  • 6Scholkopf B,Smola A J,Müller K-R.Nonlinear Component Analysis as a Kernel Eigenvalue Problem[J].Neural Computing,1998,9(3):1299-1319.
  • 7Wu J X.Application of Steel Harden-ability[M].Beijing:Mechanism Industry Publishing Company,1994:15-50.
  • 8Vermeulen W G,Van der Wolk,Weijer de A P,et al.Prediction of Jominy Hardness Profiles of Steels Using Artificial Neural Networks[J].J of Materials Engineering and Performance,1996,5(1):57-63.
  • 9Dobrzanski L A,Sitek W.Application of a Neural Network in Modeling of Harden Ability of Constructional Steels[J].J of Materials Processing Technology,1998,78(3):59-66.

二级参考文献16

  • 1Li Ning, Li Shaoyuan, Xi Yugeng. A multiple model approach to modeling based on LPF algorithm[J]. J of Systems Engineering and Electronics, 2001,12 (3): 64-70.
  • 2Takagi T, Sugeno M. Fuzzy identification of systems and its applications to modeling and control[J]. IEEE Trans on SMC,1985,15(4).116-132.
  • 3Sugeno M, Kang G T. Structure identification of fuzzy model[J]. Fuzzy Sets and Systems, 1988,28 (1) : 15-33.
  • 4Funahashi K J. On the approximate realization of continuous mapping by neural networks [J]. Neural Networks, 1989,15 (2) : 183-192.
  • 5Vapnik V. The Nature of Statistical Learning Theory[M]. New York : Springer Verlag, 1995.
  • 6Haykin S. Neural Networks: A Comprehensive Function[M]. Macmillan College Publishing Company Inc, 1994.
  • 7Smola A J, Scholkopf B. A tutorial on support vector regression[R]. NC2-TR-1998-030,1998.
  • 8Chang M-W, Lin C-J, Weng R C. Analysis of nonstationary time series using support vector machines [J].http ://www. csie. ntu. edu. tw/~cjlin/papers. html,April, 2002.
  • 9Burges C. A tutorial on support vector machines for pattern recognition[J]. Data Mining and Knowledge Discovery, 1998,2(2) : 113-145.
  • 10U H-C, Krebel. Pairwise classification and support vector machine [A]. Advances in Kernel Methods:Support Vector Learning[C]. New York, 1999. 255-268.

共引文献16

同被引文献27

  • 1徐义田,王来生.基于核主成分分析(KPCA)的一种食品评价模型[J].农业工程学报,2004,20(z1):236-238. 被引量:4
  • 2陈华才,陈星旦.近红外光谱在药物领域的应用与研究进展[J].中国计量学院学报,2003,14(4):261-267. 被引量:16
  • 3NelloC,JohnST.支持向量机导论[M].李国正,王猛,曾华军译.北京:电子工业出版社,2005:98-105.
  • 4Li X L. A brief review: acoustic emission method for tool wear monitoring during turning [ J ]. International Journal of Machine Tools and Manufacture, 2002,42 (2) : 157 - 165.
  • 5Nivesrangsan P, Steel J A,Reuben R L. Source location of acoustic emission in diesel engines [ J]. Mechanical Systems and Signal Processing, 2007,21 (2) : 1103 - 1114.
  • 6Zuluaga-Giraldo C, Mba D,Smart M. Acoustic emission during run-up and run-down of a power generation turbine [ J]. Tribology International, 2004,37 (5) : 415 - 422.
  • 7Widodo A,Yang B-S. Application of nonlinear feature extraction and support vector machines for fault diagnosis of induction motors [J]. Expert Systems with Applications, 2007,33( 1 ) :241 -250.
  • 8Jade A M, Srikanth B, Jayaraman V K, et al. Feature extraction and denoising using kernel PCA [ J ]. Chemical Engineering Science, 2003,58 ( 19 ) :4441 - 4448.
  • 9Axinte D A, Natarajan D R, Gindy N N Z. An approach to use an array of three acoustic emission sensors to locate uneven events in machining--Part 1: method and validation [ J]. International Journal of Machine Tools and Manufacture, 2005,45 ( 14 ) : 1605 - 1613.
  • 10Kirikera G R, Shinde V, Schulz M J, et al. Damage localisation in composite and metallic structures using a structural neural system and simulated acoustic emissions [ J]. Mechanical Systems and Signal Processing, 2007,21 ( 1 ) :280 - 297.

引证文献2

二级引证文献12

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部