期刊文献+

基于量子直传协议的安全即时通信系统模型设计

Model Design of Security Instant Messenger Based on Quantum Direct Communication Protocol
下载PDF
导出
摘要 量子密码通信是目前公认的唯一的绝对安全的通信方式,任何获取量子信息的操作都会因破坏量子态而被通信双方发现,从而根本上杜绝了信道窃听的存在.研究了量子直传乒乓协议的工作原理和安全特性,提出了基于P2P网络技术和量子直传乒乓协议的安全即时通信系统模型,该模型可以在保证准安全的前提下,允许通过量子信道直接传送明文. The quantum password message is the only absolutely scure communication mode generally recognized in that any operations which obtain quantum information will be discovered by both parties because of breaking quantum which, eradicates completely channel eavesdropping. The paper studies the work principle and safe characteris- tic of spreading the Ping - pong protocol. Based on the P2P network technique and quantum Ping - pong protocol and proposes the which, in the prerequisite of ensuring quasi -satety, can allows delivering plain text directly through quantum channel.
作者 高发桂
出处 《湖北民族学院学报(自然科学版)》 CAS 2006年第3期250-253,共4页 Journal of Hubei Minzu University(Natural Science Edition)
关键词 量子直传 乒乓协议 即时通信 模型设计 quantum messenger Ping - pong Protocol instant messenger model design
  • 相关文献

参考文献5

二级参考文献24

  • 1L. K. Grover, Quantum mechanics helps in searching for a needle in a haystack[J]. Phys. Rev. Lett., 1997, 79(2): 325-328.
  • 2D. Haubrich, M. Dornseifer, R. Wynand. Lossless beam combiners for nearly equal laser frequencies [J]. Rev. Sci.lnstrum., 2000, 71(2): 338-340.
  • 3Y. H. Shih, C. O. Alley. New type of Einstein-Podolsky-Rosen-Bohm experiment using Pairs of light quanta produced by optical parametric down converslon[J]. Phys. Rev. Lett., 1988,61(26): 2921 -2924.
  • 4K. Mattle, H. Weinfurter, p. G. Kwiat et al.. Dense coding in experimental quantum communication [J]. Phys. Rev. Lett.,1996, 76(25): 4656-4659.
  • 5K. Bostrom, T. Felbinger. Deterministic direct communication using entanglement[J]. Phys. Rev. Lett., 2002,89(18) : 187902-1-187902-4.
  • 6C. H. Bennett, G. Brassard. Quantum cryptography: public key distribution and coin tossing[C]. Proc. IEEE lnt.Conf, on Computers, Systems and Signal Processing, Bangalore, India(IEEE, New York,1984). 175-179.
  • 7A. K. Ekert. Quantum cryptography based on Bell's theorem[J].Phys. Rev. Lett. , 1991, 67(6): 661-663.
  • 8C. H. Bennett, G. Brassard, N. D. Mermin. Quantum cryptography without Bell s theorem[J]. Phys. Rev. Lett. , 1992,68(5) : 557-559.
  • 9D. Brub. Optimal eavesdropping in quantum cryptography with six states[J]. Phys. Rev. Lett. , 1998, 81(14): 3018-3021.
  • 10C. H. Bennett, S. J. Wiesner. Communication via one and twoparticle operators on Einstein-Podolsky Rosen states[J]. Phys.Rev. Lett., 1992, 69(20): 2881-2884.

共引文献28

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部